G.Gulyamov2, U.I.Erkaboev1, N.A.Sayidov1, R.G.Rakhimov This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Namangan Institute of Engineering and Technology,160115 Namangan, Uzbekistan
2Namangan Engineering - Construction Institute, 160103 Namangan, Uzbekistan


 

Received: February 23, 2020
Accepted: April 16, 2020
Publication Date: September 1, 2020

Download Citation: ||https://doi.org/10.6180/jase.202009_23(3).0009  

ABSTRACT


A theory is constructed of the temperature dependence of quantum oscillation phenomena in narrow-gap electronic semiconductors, taking into account the thermal smearing of Landau levels. Oscillations of longitudinal electrical conductivity in narrow-gap electronic semiconductors at various temperatures are studied. An integral expression is obtained for the longitudinal conductivity in narrow-gap electronic semiconductors, taking into account the diffuse broadening of the Landau levels. A formula is obtained for the dependence of the oscillations of longitudinal electrical conductivity on the band gap of narrow-gap semiconductors. The calculation results are compared with experimental data.


Keywords: Oscillations of electronic heat capacity, oscillations of magnetic susceptibility and oscillations of electrical conductivity, cyclotron effective mass.


REFERENCES


 

  1. [1] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Indian journal of physics. 93(5), 639 (2019).
  2. [2] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Advances in condensed matter physics. Article ID 3084631 (2019).
  3. [3] G.P. Chuiko, D.M. Stepanchikov, Physics and chemistry of solid state. 9, 312 (2008).
  4. [4] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Journal of nano – and electronic physics. 11(1), 01020 (2019).
  5. [5] M.Ben Shalom, A.Ron, A. Palevski, Y. Dagan, Physical Review letters. 105, 206401 (2010).
  6. [6] T.Helm, M.V.Kartsovnik, M.Bartkowiak, N.Bittner, M. Lambacher, A. Erb, J. Wosnitza, R. Gross, Physical Review letters 103, 157002, (2009).
  7. [7] Ning Tang, Bo Shen, Kui Han, Fang-Chao Lu, Zhi-Xin Qin, Guo-Yi Zhang, Physical Review B 79, 073304 (2009).
  8. [8] M.Petrushevsky, E.Lahoud, A.Ron, E.Maniv, I.Diamant, I.Neder, S.Wiedmann, Y.Dagan, Physical Review B 86, 045131 (2012).
  9. [9] G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. Advances in condensed matter physics, ID 6747853, (2017).
  10. [10] G.Gulyamov, U.I.Erkaboev, P.J.Baymatov, Advances in condensed matter physics, ID 5434717, (2016).
  11. [11] I.A.Dmitriev, A.D.Mirlin, D.G.Polyakov, M.A.Zudov, Rev. Mod. Phys. 84, 1709 (2012).
  12. [12] I.A.Dmitriev, A.D.Mirlin, D.G.Polyakov, Phys. Rev. B. 75, 245320 (2007).
  13. [13] G.Gulyamov, A.G.Gulyamov, U.I.Erkaboev. Applied solar energy. 54(5), 338 (2018)
  14. [14] N.B.Brandt, V.A.Kulbachinskiy, Quasiparticles in condensed matter physics. “Fizmatlit”, 297 (2007).
  15. [15] R.Passler, Phys. stat. sol.(b) 216, 975 (1999).
  16. [16] I.A.Vaynshteyn, A.F.Zatsepin, V.S.Kortov, Physics of the Solid State, 41, 905 (1999).
  17. [17] M.K.Zhitinskaya, S.A.Nemov, T.E.Svechnikova, Semiconductors. 44, 1140 (2007)
  18. [18] G.N.Isachenko, V.K.Zaĭtsev, M.I.Fedorov, A.T.Burkov, E.A.Gurieva, P.P.Konstantinov, M.V.Vedernikov, Physics of the Solid State. 51, 1796 (2009).
  19. [19] I.V. Kukushkin, S.V. Meshkov, V.B. Timofeev, Physics-Uspekhi, 31, 511 (1988).
  20. [20] Michael J.Harrison, Physical review B. 48, 5668 (1993).
  21. [21] V.A.Kulbachinskii, A.Yu.Kaminskii, K.Kindo, Y.Narumi, K.Suga, P.Lostak, P.Svanda, Physica B. 311, 292 (2002).
  22. [22] T.Kim, M.Jung, K.H.Yoo, Journal of Physics and Chemistry of Solids. 61, 1769 (2000).
  23. [23] Tsuneya Ando, Alan B. Fowler, Frank Stern, Rev. Mod. Phys. 54, 437 (1982).
  24. [24] A.N.Veis, L.N.Luk’yanova, V.A.Kutasov, Physics of the Solid State, 54, 2182 (2012).