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Abstract

The growing use of communication networks in radio electric spectrum applications has

reached a saturation point. Spectral prediction has gained importance, as several models have been

studied to improve the accuracy of predicted traffic compared to real traffic. This research aims to

generate a spectrum prediction method within a radio electric space. The obtained traffic is generated

with the MFHW algorithm, which creates traces based on parameters given by the user: mean, Hurst

parameter and spectrum width. The results revealed marginal errors of 0.04% for the Hurst parameter

and 0.085% for the estimation of the multifractal spectrum width. The MFHW algorithm builds traces

with self-similarity, long-range dependence (LRD), and multifractal characteristics, inherent to the

behavior of the radioelectric spectrum. Hence, the method discussed in this paper can establish a

modeling framework for the generation of traces applied to spectrum prediction based on multifractal

analysis.

Key Words: Traffic Generation, Multifractal, Spectrum, Wireless Communication

1. Introduction

Future wireless communication systems are designed

to support a wide range of services, such as multimedia

traffic, streaming calls, cloud-based buffer upload and

download. The use and demand of wireless data have re-

cently risen, which is a trend expected to continue in

wireless applications. It is likely that the monthly use of

mobile data will increase by eight times before 2020 com-

pared to 2015 [1]. The growing proliferation of wireless

devices has congested the 900 MHz and 2.4 GHz bands.

Meanwhile, several frequency bands licensed for opera-

tors in the 400�700 MHz range are used sporadically [2].

This notorious demand requires tools that can reduce

congestion in current telecommunication networks.

One alternative to achieve this is spectrum predic-

tion trying to straighten the use of communication chan-

nels. It is a promising approach that enhances cognitive

radio functions. Extensive research has been carried out

on various prediction techniques and applications in

telecommunication networks. However, it still needs fur-

ther effort in developing spectrum prediction designs,

providing accurate long-range predictions, and defining

prediction schemes for licensed users [3]. Over the years,

spectral inference has shaped the occupation and charac-

teristics of primary user activity. However, in the active

detection process, there is a difficult circulation and con-

trol in current networks [4]. To overcome these issues,

prediction strategies have been presented and widely

studied.

Frisch et al. introduced the multiplicative cascade

model in the context of turbulence analysis in the late

1980s [5]. Since the work of Leland et al. [6], several

studies have shown that network traffic is scale-invari-

ant, meaning that there is no specific timescale to charac-

terize the burstiness of the traffic stream. Relevant stud-
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ies have evidenced scale invariance such as the self-sim-

ilar traffic model based on the ON-OFF model proposed

by Taqqu et al. [7] and the multifractal formalism desc-

ribed by Riedi et al. in [8]. The latter has received wide

attention as one of the most popular frameworks used to

describe and analyze signals and processes with scaling

properties, covering and connecting both local and glo-

bal scaling regarding sample moments. Last but not least,

Ma and Ji proposed Wavelet-based models [9]. All of the

mentioned methods describe the behavior of traffic net-

works as self-similar processes with multifractal charac-

teristics.

Several techniques have been developed for network

traffic prediction using multifractal fundamentals. The

Multifractal - ARlMA predictor is proposed for the anal-

ysis and prediction of VBR video traffic [10]. The mixed

logical dynamical framework is used to model a multi-

server system as a nonlinear system adapted to control

the data flow of multiple servers [11]. In the pinnacle of

3G technology, mobile internet data traffic was modeled

with the fractional autoregressive integrated moving av-

erage (FARIMA) exhibiting significant multifractal cha-

racteristics [12]. Finally, the work presented hereby seeks

to generate traffic in the Wi-Fi band using the multi-

fractal kernel of multiplicative cascades.

The remainder of this article is organized as follows.

Section 2 details the current work related with spectrum

prediction. Section 3 describes the mathematical founda-

tion of the predictive model. In section 4, the results ob-

tained for the traffic prediction of a W-Fi scenario are

shown. Lastly, a set conclusions on the overall work are

presented in section 5.

2. Related Works

Other developments can be considered relevant and

are worthy of being mentioned here. Even though they

do not use the previously discussed prediction techni-

ques, they represent significant contributions in the field

of spectrum prediction. In [13], routing and topology

control problems are studied in mobile ad hoc networks

(CR-MANETs) leading to a cognitive topology control

scheme based on distributed prediction (PCTC) to pro-

vide greater routing capacities in CR-MANET. In [14],

secondary users (SU) take advantage of online learning

techniques for the regression of the received transmis-

sion power in different licensed frequency bands. Fur-

thermore, the probability of the primary user (PU) state

that can be busy or inactive is predicted based on the re-

sults of the power regression. The proposed strategy not

only saves time and energy, but also improves the perfor-

mance of unlicensed users. In [15], a new modeling me-

thod for spectrum measurement is proposed with various

essential frequency bands through Daubechies waves.

The method uses spectrum analysis and predicts based

on regression. The strategy in [16] consists on combin-

ing spectrum prediction and monitoring techniques th-

rough the AND and OR fusion rules, for the detection of

licensed users emerging in data transmission. The au-

thors in [17] propose a new MAC called sense-and-pre-

dict (SaP), where each secondary transmitter (TX) de-

cides whether to access or not the spectrum according to

the predicted interference level in the receiver (RX). In

[18], a new stochastic cognitive anti-jamming game mo-

del is used in multi-agent environments where each auto-

nomous broadband cognitive radio seeks to predict and

avoid transmissions from other radios and dynamic in-

terference signals.

3. Materials and Methods

3.1 Data Collection

The research in [19] provided the nominal power

values of the electric radio spectrum of Bogotá, Colom-

bia. The information was acquired with a spectrum ana-

lyzer carrying out data traffic detection. The absence or

presence of traffic was determined for the GSM, Wi-Fi

and 1850�2000 MHz bands. The equipment used to reg-

ister the spectral measurements included: a Discone an-

tenna in the frequency range between 25 MHz and 6

GHz, a low noise amplifier (LNA) in the operating fre-

quency range between 20 MHz and 8 GHz, and a power

spectrum analyzer in the operating frequency range be-

tween 9 kHz and 7.1 GHz [20]. Measurements were car-

ried out in six locations around the city. The main techni-

cal parameters of the captured data are a band resolution

of 100 kHz, a span of 50 MHz and a time resolution of

333 ms [19].

This research focuses on the data of the Wi-Fi band.

The information gathered comes from 461 frequency
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channels, with a time resolution corresponding to one-

third of a second. In total, the Wi-Fi database has 85%

training data (4,978,800) and 15% evaluation data

(829,800). In 2015, the authors in [20] conducted a pre-

liminary study to obtain an availability matrix describing

the occupancy of primary users in the radio electric spec-

trum of Bogotá. A value of 1 in the matrix corresponds to

an available time-frequency space while a 0 is a non-ac-

cessible space. The power values of the 461 channels are

compared element-wise with a specific threshold. The

tool proposed in [20] transforms the power data within

the -40 to -147 dBm range into binary values according

to the restriction set by a threshold.

Based on the availability matrix of the Wi-Fi band, it

is proposed to create a time series that collects user

download packages in time units and the availability of

consecutive time instants within a channel. This reorga-

nization of data has the purpose of building a time series

revealing and thereby measuring channel fluctuations

between occupied and available states as shown in Fig-

ure 1a.

For the generation of the time series, positive weights

are assigned to the time instants in which the channel is

free and negative weights are assigned to the occupied

moments. A counting process of the positive and nega-

tive time units was performed so that the newly obtained

time series contains consecutive intercalated available

packets, followed by the packets occupied by users. The-

refore, said series has positive values indicating free time

units and negative values for occupancy-related units as

shown in Figure 1b. The process is iterative for all chan-

nels included in the availability matrix.

3.2 Multifractal Traffic

The traditional tool for modeling and analysis of net-

work traffic had been the classical Poisson traffic model,

which was later adapted for queuing systems [21]. The

measured traffic started revealing behaviors that were

different from what was expected by the Poisson and

Markov models. The data collected in Bellcore labs pa-

ved the way to study scale invariance for LAN traffic

characterization [22]. Traditional time series models have

proved to be insufficient to model traffic self-similarity

so the analysis of such processes called for new tech-

niques. Some models based on monofractal procedures

were proposed to attempt to shape this traffic [23]. A re-

cent analysis of the measured data revealed the existence

of multifractal scaling behavior [8,24].

A process X(t) is said to have local scaling proper-

ties with a local scaling exponent �(t) if the process

behaves such that X(�t) ~ (�t)�(t) as (�t) � 0. In

monofractal processes, the scaling exponent �(t) = H

for all times while the scaling parameter �(t) is non-

constant for multifractal scenarios. The local holder

exponent is given by �(t) [25]. When the analysis is

carried out in the scale domain with a wavelet trans-

form, an estimation can be made of the coefficients con-

taining the main information of signal X(t) with the dis-

crete wavelet transform (DWT) noted as dx(j, k) (see

(1) and (2)) [26].
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Figure 1. Building the time series based on the Wi-Fi availability matrix.
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A fundamental characteristic of the continuous wavelet

transform Tx (a, b) is its redundancy, since neighboring

coefficients share some common information regarding

X. In fact, in order to reduce the redundancy from the in-

ner product of the signal and the set of dilations (a) and

shifts (b) of a mother wavelet � (·), the DWT is intro-

duced for all jth scales. The variance of dx(j, k) can be

estimated as �j, with the most relevant characteristics

following the scaling behavior of the original signal

(see (3) and (4)).
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The Hurst parameter H can be estimated by calculat-

ing the linear regression slope of yj against j. This repre-

sentation is called the log-scale diagram (LD) of Equa-

tion (5).

yj = log2 �j = (2H � 1) j + log2 C (5)

Estimating H is useful to study second-order statis-

tics (q = 2) of stochastic processes. Furthermore, the

wavelet transform can be used for higher and lower sta-

tistic order in the real domain (q 
 R). Consider the ex-

tension of �j to �jq and the estimator of �jq as shown in

Equations (6) and (7).
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A monofractal process could be described as H (q) =

H � q 
�, meaning that the Hurst parameter is the same

for all statistics orders. When H (q) decreases based on

statistical orders the process is multifractal. The linear

multiscale diagram (MD) plots the singularity exponent

H (q) of order q versus q, describing the behavior of H

for different orders.

The multifractal spectrum (MS) plots H (q) versus

the singularity dimension D (q). These two variables are

a linear transformations of scales into statistical moments.

Therefore, the function mapping the sampling scales with

the respective statistical moments is non-linear. D(q) can

be estimated using the mass exponent � (q) of order q

shown in (8) and (9).
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The MS for a pure monofractal process is a point in

space. In contrast, a multifractal time series is a concave

curve pointing towards the x-axis. This form can be ap-

proximated to a second-order polynomial function whose

width can be found by zero-crossing the function when

D (q) = 0. This width is called the multifractal spectrum

width (SW).

3.3 MFHSW

In 1999, Riedi et al. proposed in [27] a traffic gen-

eration model using a Conservative Binomial Cascade

(CBC). The model was called the Multifractal Wavelet

Model (MWM) and was based in the Haar wavelet trans-

form, with the structure shown in (10).

Wj,k = Aj,kUj,k (10)

where Aj,k is a random variable in the [-1, 1] interval. To

make sure that |Wj,k| � Uj,k, the scale coefficients (j,k)

have to be positive and zero-symmetric. Moreover, the

multipliers Aj,k = 2Bj,k, are identically distributed ran-

dom parameters within the [0,1] interval and symmetric

to 0,5. The relation between the MWM and the multi-

plicative cascades takes place when the Haar transform

serves as a multiplicative cascade coefficient by estab-

lishing the multiplicative coefficients as random vari-

ables, with an average of 0.5 in the [0,1] range. There-

fore, the generation of positive data with multifractal

characteristics is guaranteed. The MWM starts with

U0,0 as the iteration value distributed for two intervals

according to Bj,k and Bj,k � 1. The Bj,k value is a ran-

dom number with a � distribution. Then, these values

are distributed in the third scale into two with a differ-

ent Bj,k for each couple. This process continues up to
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the Nth scale, leading to 2n intervals with U0,0 initial

fractions. Therefore, the resulting CBC is given by (11).
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In 2012, Lopez et al. [26] proposed the multifractal-

Hurst (MFH) algorithm to generate traces with positive

data and long-range dependence. Since the MFW obeys

to a power law, its fractal nature requires adjusting the

Hurst parameter and its average. The wavelet coefficient

multipliers are given by a � distribution with the relation

in [30] for all scales of the CBC (see (13)).

B k Hj k h

H

H, [ . , ]� �
�

�
# 


�

�

2 1

2 2
051

2 1

2 1
(13)

When kh is adjusted with the expected value of H, it

takes the same value of the parameter P defined in the

multiplicative cascade method. A multifractal trace of

length 2n is obtained with a given average and Hurst pa-

rameter. Finally, the MFH validates the value of H in

the trace using the LD. If the estimation of H is not

small enough to adjust to the confidence values, the trace

is dismissed and a new one is generated. This process is

repeated until H remains within the confidence values.

Therefore, the CBC is built as indicated in Equation

(14).
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In 2016, Tuberquia et al. [28], proposed the multi-

fractal-Hurst spectrum width (MHSW) algorithm to gen-

erate positive multifractal traffic with the mean, H and

SW variables set by the user. This recent model distrib-

utes two kh throughout the scales of the CBC, instead of

just one as seen in the MFH. In order to adjust the width

of the multifractal spectrum, setting kh = khw in the last

stage of the CBC would allow the modification of the

spectrum. khw is computed by a series of experimental

curves establishing its relation with the distribution of H

in terms of the surrounding scales as shown in (15).

H Hh hw% �
%05 1

2

.
(15)

In fact, kh is estimated with the Hurst parameter Hh

of the final trace. The evaluation of khw is provided by

Hhw (js, Ws), a linear function stating the relation be-

tween the scale where the cascade starts to change (js)

and the desired multifractal SW (Ws). Thus, the CBC is

defined as in (16).
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B1j,k and B2j,k are random numbers with � distribu-

tion. The MFHW algorithm can be described as:
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Algorithm 1: MFHW Synthesis

1 Input: U = Mean inter-arrival, n = length of trace,
2 Hs = Desired Hurst, Ws = Desired MS

Width
3 Output: Wjk = New_Trace
4 kh = (2^(2*Hh-1)-1)/(2-2^(2*Hh-1));

%Hh: Hurst parameter
5 Hhw = f(js, Ws);
6 khw = (2^(2*Hhw-1)-1)/(2-2^(2*Hhw-1));

%Hhw: Hurst
%parameter with width of the spectrum

7 Wjk=[U];
8 for i & 1 to n
9 if i < js then

10 k = kh; %k adjusted with the expected value of H
11 else
12 k = khw; % k adjusted for width of the

multifractal spectrum
13 end
14 for each Wjk[j]
15 p = beta_rand(k);
16 divide Wjk[j] in two (2*Wjk[j]*p,

2*Wjk[j]*(1-p))
17 end
18 end
19 ReturnWjk



3.4 LD, MD and MS for the Radio Electric

Spectrum in Bogotá

In first place, the Hurst parameter is estimated for

each channel of the radioelectric spectrum. The calcula-

tion of the variance estimator is based on the DWT. The

slope is derived from the linear regression of yj against j.

Channels with 0.5 < H < 1 indicate a persistent trend in

behavior and long-range dependence. Channels with H >

1 indicate an anti-persistent trend in behavior and series

non-stationary. Out of the 461 channels, 25 were found

with H < 0.5 (non-random discrete sequence), two with

H > 1 and 434 remained in the [0.5, 1] range.

In second place, the MD is calculated for all chan-

nels in the spectrum. In the estimation process of H (q),

the channels showed some irregularities in terms of

shape and organization thus related to the sampling pro-

cedure. In Figure 2a, the blue curve highlights an exam-

ple of inadequate sampling. The proper selection of H (q)

is carried out by a hierarchical decision tree where the

maximum value close to q = 0 is chosen for H (q) which

can then be compared to a sigmoidal-like curve. To prop-

erly estimate the width of the multifractal spectrum, as

shown in Figure 2b, the blue curve represents the multi-

fractal spectrum with inadequate sampling, where the cal-

culation of the multifractal spectrum width is complex to

perform.

After the sampling correction of the MD curve, the

green curve can be obtained as shown in the Figure 2a.

The curve descends when q goes from negative towards

positive values. Similarly, the calculation of the MS

width in Figure 2b shows that it is more precise for the

green curve. Once the MDs have been corrected, the spec-

tral widths are calculated in order to verify the multi-

fractality of the time series derived from traffic in Bogotá.

The spectral widths have an average of 1.2072, a

standard deviation of 0.3647, a minimum value of 0.7285

and a maximum value of 4.7910. Lastly, the estimation

of H (q) and D (q) for all channels of the radio electric

spectrum leads to an accurate traffic generation using the

MFHW algorithm. The procedure is described in Algo-

rithm 2.
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Figure 2. Before and after optimal sampling a) MD, b) MS.

Algorithm 2: MFHW for generation of CR traffic

1 Input: Availability_Matrix
2 Output: New_Traffic
3 for ch & 1 to the last channel of availability matrix
4 New_Time_Series(ch) & Signal_Adaptation

(Availability_Matrix(ch));
5 Hh(ch) & Hurst_Parameter_Estimation

(New_Time_Series(ch));
6 Kh(ch) & Beta_Coefficients(H1(ch));
7 Ws(ch) & MS_Width_Estimation

(New_Time_Series(ch));
8 Khw(ch) & Beta_Coefficients(W1(ch));
9 while |Ws (ch)-W| < 0.1 do

10 while |Hh(ch)-H| < 0.05 do
11 trace & MFHW(K1,K2);
12 H & Log_Scale_Diagram(trace);
13 W & Multifractal_Spectrum_Diagram(trace);
14 end
15 end
16 New_Traffic(ch) & trace;
17 end
18 Return New_Traffic



4. Result Discussions

Regarding the values of H for each traffic series, the

analysis presented in this research confirms that H ran-

ges between 0.5 and 1. This indicates a self-similar be-

havior in the series and an asymptotic trend of the auto-

correlation functions. It ensures that said series have a

hyperbolic trajectory in the ‘tails’ of the distribution, of-

fering a response far from exponential. The central limit

theorem for self-similar processes reinforces the use of

the autocovariance function on said processes within the

[0.5, 1] interval, directly depending on the value of H [23].

In Figure 3, the blue markers correspond to the origi-

nal estimations of H while the green markers correspond

to the estimated values of H derived from traffic predic-

tion. The black lines represent the errors between the ex-

pected and generated values. The overall error prediction

for the Hurst parameter is 4.0547%.

Moreover, multifractality is related with the cases in

which H is non-constant throughout the scale. This re-

veals a more stochastic nature in comparison to self-sim-

ilar behavior or LRD. The results for the multifractal

spectrum in traffic prediction are shown in Figure 4.

Figure 4 shows the spectral widths for the original

time series in blue and the spectral MFHW estimates

from traffic prediction in green. The black lines denote

the error between the expected and generated values. The

overall prediction error for the spectral width is 8.8583%.

100 consecutive channels and 100 time instants were

compared between the original and predicted availability

matrices. The resulting error is 33.67%. From left to

right, Figure 5 shows the original channels, the predicted

channels using the MFHW method and the errors.

5. Conclusions

This article discusses the study of non-constant re-

sponses for the Hurst parameter H throughout a con-

structive multifractal model in order to generate and cha-

racterize traffic flow in high-speed computer networks.

The main purpose was to provide a prediction tool for

multifractal traffic. Using the MFHW algorithm, essen-

tial characteristics were obtained that describe the ana-

lyzed traffic. The prediction values for the multifractal

spectrum width and Hurst parameter were less than 0.1

and 0.01 respectively. Nevertheless, it is recommended

to expand the MFHW algorithm thus increasing the ac-

curacy of the newly obtained traffic and improve the re-

sults for the availability matrix in the radioelectric spec-

trum of the city of Bogotá.
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Figure 3. Hurst error for prediction of channels in the radio-
electric spectrum of Bogotá.

Figure 4. Multifractal SW error for channel prediction of the
radio spectrum in Bogotá.
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