Yuan-Lung Lo This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Yong Chul Kim2

1Department of Civil Engineering, Tamkang University, New Taipei City, Taiwan 251, R.O.C.
2Department of Architecture, Tokyo Polytechnic University, Kanagawa, Japan 243-0297


 

Received: February 20, 2019
Accepted: April 30, 2019
Publication Date: September 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201909_22(3).0005  

ABSTRACT


This paper investigates the wind forces acting on two principal buildings interfered by a very closely located dummy building. For the study, the high-frequency force balancer is used to measure over-turning moments in the along-wind and cross-wind directions in a well-simulated turbulent boundary layer flow. The two principal buildings are made into a square and a tapered cylinder respectively; the dummy building is a square cylinder that produces various interference effects when its relative location to the principal building is adjusted. Results show that the response estimations for safety and habitability level may differ due to various interference effects and different shapes of principal buildings. Critical interference locations are found for significant wind-induced responses.


Keywords: Interference Effect, High-frequency Balancer, Over-turning Moment, Wind-induced Response


REFERENCES


  1. [1] Saunders, J. W., and W. H. Melbourne (1979) Buffeting effects of upstream buildings, Proceedings of the Fifth International Conference on Wind Engineering, Fort Collins, Colorado. Pergamon Press, Oxford, 593 608. doi: 10.1016/0093-6413(79)90015-6
  2. [2] Surry, D., and W. Mallais (1983) Adverse local wind loads induced by adjacent building, J. Sruct. Eng. ASCE 108, 816821. doi: 10.1061/(ASCE)0733-9445 (1983)109:3(816)
  3. [3] Bailey, P. A., and K. C. S. Kwok (1985) Interference excitation of twin tall buildings, J. Wind Eng. Ind. Aerodyn. 21, 323338. doi: 10.1016/0167-6105(85) 90043-1
  4. [4] Blessmann, J., and J. D. Riera (1985) Wind excitation of neighboring tall buildings, J. Wind Eng. Ind. Aerodyn. 18, 91103. doi: 10.1016/0167-6105(85)90076-5
  5. [5] Kareem, A. (1987) The effect of aerodynamic interference on the dynamic response of prismatic structures, J. Wind Eng. Ind. Aerodyn. 25, 365372. doi: 10.1016/ 0167-6105(87)90028-6
  6. [6] Taniike, Y., and H. Inaoka (1988) Aeroelastic behavior of tall buildings in wakes, J. Wind Eng. Ind. Aerodyn. 28, 317327. doi: 10.1016/0167-6105(88)90128-6
  7. [7] Sakamoto, H., and H. Haniu (1988) Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer, J. Wind Eng. Ind. Aerodyn. 31, 4166. doi: 10.1299/kikaib.51.4146
  8. [8] Taniike, Y. (1991) Turbulence effect on mutual interference of tall buildings, J. Eng. Mech. 117(3), 443 456. doi: 10.1061/(ASCE)0733-9399(1991)117:3(443)
  9. [9] Taniike, Y. (1992) Interference mechanism for enhanced wind forces on neighboring tall buildings, J. Wind Eng. Ind. Aerodyn. 4144, 10731083. doi: 10.1016/ 0167-6105(92)90114-P
  10. [10] Yahyai, M., K. Kumar, P. Krisha, and P. K. Pande (1992). Aerodynamic interference in tall rectangular buildings, J. Wind Eng. Ind. Aerodyn. 41 44, 859 866. doi: 10.1016/0167-6105(92)90506-6
  11. [11] Zhang, W. J., K. C. S. Kwok and Y. L. Xu (1994) Aeroelastic torsional behavior of tall buildings in wakes, J. Wind Eng. Ind. Aerodyn. 51, 229248. doi: 10.1016/ 0167-6105(94)90006-X
  12. [12] Zhang, W. J., Y. L. Xu, and K. C. S. Kwok (1995) Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings, J. Wind Eng. Ind. Aerodyn. 57, 4161. doi: 10.1016/0167-6105(94) 00098-X
  13. [13] Sun, T. F., and Z. F. Gu (1995) Interference between wind loading on group of structures, J. Wind Eng. Ind. Aerodyn. 5455, 213225. doi: 10.1016/0167-6105 (94)00051-E
  14. [14] Khanduri, A. C., C. Bedard, and T. Stathopoulos (1997) Modelling wind-induced interference effects using backpropagation neural networks, J. Wind Eng. Ind. Aerodyn. 72, 7179. doi: 10.1016/S0167-6105 (97)00259-6
  15. [15] Khanduri, A. C., T. Stathopoulos, and C. Bedard (1998) Wind-induced interference effects on buildings – a review of the state-of-the-art, Eng. Struct. 20(7), 617 630. doi: 10.1016/S0141-0296(97)00066-7
  16. [16] Khanduri, A. C., T. Stathopoulos, and C. Bedard (2000) Generalization of wind-induced interference effects for two buildings, Wind & Struct. 3(4), 255266. doi: 10.12989/was.2000.3.4.255
  17. [17] Luo, S. C., L. L. Li, and D. A. Shah (1999) Aerodynamic stability of the downstream of two tandem square-section cylinders, J. Wind Eng. Ind. Aerodyn. 79, 79103. doi: 10.1016/S0167-6105(98)00111-1
  18. [18] Thepmongkorn, S., G. S. Wood, and K. C. S. Kwok (2002) Interference effects on wind-induced coupled motion of a tall building, J. Wind Eng. Ind. Aerodyn. 90, 18071815. doi: 10.1016/S0167-6105(02)00289-1
  19. [19] Tang, U. F., and K. C. S. Kwok (2004) Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model, J. Wind Eng. Ind. Aerodyn. 92, 1299 1314. doi: 10.1016/j.jweia.2004.08.004
  20. [20] Xie, Z. N., and M. Gu (2004) Mean interference effects among tall buildings, Eng. Struct. 26, 11731183.
  21. [21] Xie, Z. N., and M. Gu (2007) Simplified formulas for evaluation of wind-induced interference effects among three tall buildings, J. Wind Eng. Ind. Aerodyn. 95, 3152. doi: 10.1016/j.jweia.2006.05.003
  22. [22] Huang, P., and M. Gu (2005) Experimental study on wind-induced dynamic interference effects between two tall buildings, Wind & Struct. 8(3), 147161. doi: 10.12989/was.2005.8.3.147
  23. [23] Zhao, J. G., and K. M. Lam (2008) Interference effect in a group of tall buildings closely arranged in an L- or T-shaped pattern, Wind & Struct. 11(1), 118. doi: 10.12989/was.2008.11.1.001
  24. [24] Lam, K. M., M. Y. H. Leung, and J. G. Zhao (2008) Interference effects on wind loading of a row of closely spaced tall buildings, J. Wind Eng. Ind. Aerodyn. 96, 562583.
  25. [25] Lam, K. M., J. G. Zhao, and M. Y. H. Leung (2011) Wind-induced loading and dynamic responses of a row of tall buildings under strong interference, J. Wind Eng. Ind. Aerodyn. 99, 573583. doi: 10.1016/j.jweia. 2011.02.006
  26. [26] Hui, Y., Y. Tamura, and A. Yoshida (2012) Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients, J. Wind Eng. Ind. Aerodyn. 104106, 98108. doi: 10.1016/j.jweia.2012.04.004
  27. [27] Hui, Y., Y. Tamura, A. Yoshida, and H. Kikuchi (2013a) Pressure and flow field investigation of interference effects on external pressures between high-rise buildings, J. Wind Eng. Ind. Aerodyn. 115, 150161. doi: 10.1016/j.jweia.2013.01.012
  28. [28] Hui, Y., A. Yoshida, and Y. Tamura (2013) Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients, J. Fluids Struct. 37, 120133. doi: 10.1016/j.jfluidstructs.2012. 11.007
  29. [29] Fang, F. M., C. Y. Chung, Y. C. Li, W. C. Liu, and P. K. Lei (2013) The acrosswind response of the downwind prismin a twin-prism systemwith a staggered arrangement, Wind & Struct. 17(3), 245262. doi: 10.12989/ was.2013.17.3.245
  30. [30] Kim, W. S., Y. Tamura, and A. Yoshida (2011) Interference effects on local peak pressures between two buildings, J. Wind Eng. Ind. Aerodyn. 99, 584600. doi: 10.1016/j.jweia.2011.02.007
  31. [31] Kim, W. S., Y. Tamura, and A. Yoshida (2013) Simultaneous measurement of wind pressures and flow patterns for buildings with interference effect, Advances Struct. Eng. 16(2), 287305. doi: 10.1260/1369-4332. 16.2.287
  32. [32] Kim, W. S., Y. Tamura, and A. Yoshida (2015a) Interference effects on aerodynamic wind forces between two buildings, J. Wind Eng. Ind. Aerodyn. 147, 186 201. doi: 10.1016/j.jweia.2015.10.009
  33. [33] Mara, T. G., B. K. Terry, T. C. E. Ho, and N. Isyumov (2014) Aerodynamic and peak response interference factors for an upstream square building of identical height, J. Wind Eng. Ind. Aerodyn. 133, 200210. doi: 10.1016/j.jweia.2014.06.010
  34. [34] Zhang, A., C. Gao, and L. Zhang (2005) Numerical simulation of the wind field around different building arrangements, J. Wind Eng. Ind. Aerodyn. 93, 891 904. doi: 10.1016/j.jweia.2005.09.001
  35. [35] Lo, Y. L., Y. C. Kim, and Y. C. Li (2016) Downstream interference effect of high-rise buildings under turbulent boundary layer flow, J. Wind Eng. Ind. Aerodyn. 159, 1935. doi: 10.1016/j.jweia.2016.10.002
  36. [36] Lo, Y. L., Y. C. Kim, and A. Yoshida (2017) Effects of aerodynamic modification mechanisms on interference from neighboring buildings, J. Wind Eng. Ind. Aerodyn. 168, 271287. doi: 10.1016/j.jweia.2017.06.018
  37. [37] Kareem, A., T. Kijewski, and P. C. Lu (1998) Investigation of interference effects for a group of finite cylinders, J. Wind Eng. Ind. Aerodyn. 7778, 503520. doi: 10.1016/S0167-6105(98)00168-8
  38. [38] Niemann, H. J., and M. Kasperski (1999) Interference effects for a group of two reinforced concrete chimneys, J. Fluids Struct. 13, 987997. doi: 10.1006/jfls. 1999.0239
  39. [39] Wang, F., Y. Tamura, and A. Yoshida (2014) Interference effects of a neighboring building on wind loads on scaffolding, J. Wind Eng. Ind. Aerodyn. 125, 112. doi: 10.1016/j.jweia.2013.11.009
  40. [40] Uematsu, Y., J. Yasunaga, and C. Koo (2015) Design wind loads for open-topped storage tanks in various arrangements, J. Wind Eng. Ind. Aerodyn. 138, 7786. doi: 10.1016/j.jweia.2014.12.013
  41. [41] English, E. C. (1990) Shielding factors from wind-tunnel studies of prismatic structures, J. Wind Eng. Ind. Aerodyn. 36, 611619. doi: 10.1016/0167-6105(90) 90404-Z
  42. [42] English, E. C., and F. R. Fricke (1999) The interference index and its prediction using a neural network analysis of wind-tunnel data, J. Wind Eng. Ind. Aerodyn. 83, 567575. doi: 10.1016/S0167-6105(99)00102-6
  43. [43] Zhang, A., C. Gao, and L. Zhang (2005) Numerical simulation of the wind field around different building arrangements, J. Wind Eng. Ind. Aerodyn. 93, 891 904. doi: 10.1016/j.jweia.2005.09.001
  44. [44] Zhang, A., and M. Gu (2008) Wind tunnel test and numerical simulations of wind pressures on buildings in staggered arrangement, J. Wind Eng. Ind. Aerodyn. 96, 20672079. doi: 10.1016/j.jweia.2008.02.013
  45. [45] Kim, Y. C., Y. Tamura, H. Tanaka, K. Ohtake, E. K. Bandi, and A. Yoshida (2014) Wind-induced responses of super-tall buildings with various atypical building shapes, J. Wind Eng. Ind. Aerodyn. 133, 191199. doi: 10.1016/j.jweia.2014.06.004
  46. [46] Kim, Y. C., E. K. Bandi, A. Yoshida, and Y. Tamura (2015b) Response characteristics of super-tall Buildings – effect of number of sides and helical angle, J. Wind Eng. Ind. Aerodyn. 145, 252262. doi: 10.1016/ j.jweia.2015.07.001
  47. [47] Kim, Y. C., Y. Tamura, and S. Kim (2016) Wind load combinations of atypical supertall buildings, J. Struct. Eng 142(1), 04015103-104015103-8. doi: 10.1061/ (ASCE)ST.1943-541X.0001359
  48. [48] Tamura, Y. (2006) Amplitude dependency of damping in building and estimation techniques, Proceedings of the 12th AWES Wind Engineering Workshop.
  49. [49] Tamura, Y. (2012) Amplitude dependency of damping in building and critical tip drift ratio, J. High-Rise Build. 1, 113.
  50. [50] Cheng, C. M., Y. Y. Lin, J. M. Wang, J. C. Wu, and C. H. Chang (2007) The aerodynamic database for the interference effects of adjacent tall buildings, Proceeding: The 12th International Conference on Wind Engineering.