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Abstract

Locating ground targets in unmanned aerial vehicle images is a key problem in computer vision

and UAV applications. In this paper, we propose a novel ground target localization algorithm based on

the image process technique. The main idea of this paper is to utilize scale-invariant feature transform

(SIFT) feature descriptor to tackle the proposed problem. SIFT feature descriptor can extract feature

points which are invariant to scaling, orientation, affine transforms and illumination changes. Firstly,

SIFT descriptors are matched from UAV images and coarse positioning result, and location points are

extracted from UAV images. Secondly, coordinates in coarse positioning results are gained from

remote sensing images using the radiation transformation model, and the final ground target localization

results are obtained from the coordinate transformation relation. Experimental results demonstrate that

the proposed algorithm can detect and locate ground target in UAV images with high accuracy.
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1. Introduction

An unmanned aerial vehicle (UAV), also named as

an unmanned aircraft system (UAS), refers to an aircraft

without a human pilot. The flight of UAVs may operate

with different degrees of autonomy, that is, 1) remote

control by human pilots, 2) completely autonomous by

computers [1,2]. Different from aircraft controlled by

humans, UAVs are suitable to be used in dull, dirty or

dangerous environments. Due to the characteristics of

low cost, no casualties’ risk, strong survival ability, UAV

performs better than ordinary reconnaissance and satel-

lite systems [3,4]. Furthermore, the UAV aerial images

has been widely utilized in dangerous areas investigat-

ing, real-time detection of battlefield, marine environ-

mental monitoring, natural disaster detection, and so on.

Hence, UAV image analysis has attracted more and more

attention from researchers [5�7]. Some typical unmanned

aerial vehicles are shown in Figure 1.

In Figures 1(a), 1(b) and 1(c), it means the Penguin B

fixed-wing UAVs from UAV factory equipped with Cloud-

Cap Piccolo autopilot system, X8 fixed-wing UAVs equip-

ped with Ardupilot autopilot systems, and Microdrone

MD4-1000 equipped with Ardupilot autopilot systems

respectively.

This paper demonstrates on the problem of locate the

position of ground targets by unmanned aerial vehicle

image analysis, which is a key issue in UAV image pro-

cess. For the best of our knowledge, target localization

has been studied in recent years.

Feng et al. proposed a fast efficient power allocation

algorithm used to cognitive distributed multiple radar

systems, which highly relied on an alternating global

search algorithm. Furthermore, this work aimed to mini-

mize the non-convex CRLB of target location detection

[8]. Chu et al. proposed an approach to calculate the error
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signal delay discrimination using characteristic parame-

ters, and the approach of Taylor series expansion loca-

tion algorithm is presented as well [9]. Baghaee et al.

studied the influence of environmental variations, (e.g.

temperature, power supply fluctuations, magnetic noise,

sensor sensitivity, and so on) on the target localization

[10]. Einemo et al. tackled the issue of locating a target

using multiple-input multiple-output radar with widely

separated antennas. In particular, a quadratically con-

strained quadratic program for target localization is de-

veloped by linearizing the bistatic range measurements

[11]. Vander et al. proposed a novel algorithm to locate a

static target exploiting mobile robots installed with bear-

ing sensors [12]. Matriche et al. proposed a novel ap-

proach to detect and locate buried metallic object in Elec-

troMagnetic Induction data with the kernel change de-

tection algorithm. In particular, the goal of the given al-

gorithm is to compute a decision index for each EMI

measurement in hypotheses space [13]. Jang et al. pro-

posed a location adaptive least square localization which

deletes the weakness of the LS localization, and LA-LS

algorithm can determine the receivers that produce ab-

normally large measurement errors with a proposed pro-

babilistic measure [14]. Apart from the above works,

other technologies have also been used in target localiza-

tion, such as pseudogradient algorithm [15], false local-

ization rate estimation using modified target-decoy [16],

and deformable mesh registration [17].

The rest of the paper is organized as follows. We ex-

plain the SIFT feature descriptor in section 2. In section

3, we propose a novel ground target localization algo-

rithm using the SIFT feature. Section 4 designs and im-

plements a series of experiments to prove the effective-

ness of our method. Section 5 concludes the whole paper.

2. Overview of SIFT Feature Descriptor

SIFT [18] feature descriptor is able to extract fea-

tures which are invariant to scale, orientation, affine

transforms and illumination changes. SIFT feature vec-

tor is represented as follows.

(1)

where v1(fi) refers to the feature vector of fi. Moreover,

l1(fi) represents the location in image. Particularly, dis-

tance between V(f1) and V(f2) cannot be computed using

the Euclidean distance directly.

In order to gain local descriptors, the derivatives dx1

and dx2 of the image region R(x) are computed by the fol-

lowing equations.

(2)

(3)

Next, given an image region, magnitude (denoted as

M(�)) and orientation (denoted as O(�)) are calculated as

follows.

(4)

(5)

The scale space of an image is represented as L(x, y,

�), which is generated from the convolution of Gaussian

G(x, y, �) [20], and the following equation is satisfied:

(6)

where I(x, y) is the UAV image.

The scale space extrema is defined as D(x, y, �), which

is computed as follows [20].

(7)

where k is the constant multiplicative factor.

3. The Proposed Ground Target Localization

Algorithm Using SIFT Feature

Our proposed ground target localization system is

made up of two steps (shown in Figure 2).

As is shown in Figure 2, in the first step, SIFT de-

scriptors are matched from UAV images and coarse posi-

tioning results, and location points are extracted from

UAV images; in the second step, coordinate in coarse po-
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sitioning result is obtained from remote sensing images

utilizing the radiation transformation model, and the fi-

nal ground target localization results are gained from the

coordinate transformation relation.

Feature matching refers to seek relationships between

different image feature points after extracting visual fea-

tures.

For the SIFT feature, we construct a feature vector

and the match feature point by similarity calculation.

Suppose that there are two feature vectors, that is V1 =

(a1, a2, a3, …, an) and V2 = (b1, b2, b3, …, bn). The dis-

tance between V1 and V2 is calculated as follows [19].

(8)

where i � (1, 2, …, n), and n denotes the number of di-

mension of feature vector.

As there are non-overlapping regions in images, fea-

ture points in these regions cannot be matched. However,

SIFT feature matching algorithm still tries to find a fea-

ture point, and the matching results are obviously wrong.

Therefore, in this paper, we exploit the Mahalanobis dis-

tance to re-match feature points. For a sample space with

n points Z = {(x1, y1), (x2, y2), …, (xn, yn)}. The Ma-

halanobis distance between sample zi = (xi, yi) and sam-

ple mean value � = (�x, �y) is defined as follows.

(9)

where Cz refers to the covariance matrix, � means the

sample mean value. The definition of Cz and � are de-

fined as follows.

(10)

(11)

where [ ] refers to an expectation of the two random va-

riables

The affine transformation denotes a function between

affine spaces which preserves points, straight lines and

planes. In particular, an affine transformation does not

require preserve angles between lines or distances among

points. Affine transformation model of this work is de-

scribed as follows.

(12)

where tx and ty denote translation, � is the rotating an-

gle, and s refers to a zoom scale. Moreover, (x2, y2) and

(x1, y1) denote matching feature point pairs of image to

be matched and the reference image.

More generally, 2D affine transformation is defined

as follows.

(13)

4. Experiment

In this section, we choose six UAV images to test the

performance of the proposed algorithm. In 2D affine
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Figure 2. The proposed ground target localization system.



transformation (show in Eq. 13), parameters are illus-

trated in Table 1.

Afterwards, in order to facilitate comparison, we

normalize the range of X and Y coordinate to 0 � X, Y � 1,

and the target localization results of the above six images

in the normalized range are shown in Figure 3 to Figure 8.

Integrating the above results, the average distances

between actual data and the target localization results are

given in Table 2 as follows.

In order to make performance comparison, we choose

the deformable mesh registration based method (denoted

as DMR) [17] to compare the accuracy of target localiza-

tion of ours method. Experimental result is shown in Fig-

ure 9 as follows.

Figure 9 shows that the proposed method can achieve

lower average distance in target localization than DMR.

To clearly describe the accuracy of the proposed al-

gorithm, an example of target localization result is shown

in Figure 10.

Based on all the above experimental results, it can be

observed that the proposed algorithm is able to accurately

detect and locate ground target in UAV images.
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Table 1. Parameter of 2D affine transformation

Parameter a11 a12 a21 a22 a13

UAV image 1 0.9892 0.0037 0.0491 0.9975 0.2556

UAV image 2 -0.5396- -0.1852- 1.1125 1.1152 3.7842

UAV image 3 0.9677 0.0074 0.0225 1.0023 6.2549

UAV image 4 -0.4458- -0.1597- 1.0254 1.2478 3.6985

UAV image 5 0.9587 0.0147 0.0274 1.0147 5.9687

UAV image 6 0.9741 0.0052 0.0488 0.9834 0.2368

Figure 3. Target localization result in the normalized range
(image 1).

Figure 4. Target localization result in the normalized range
(image 2).

Figure 5. Target localization result in the normalized range
(image 3).

Figure 6. Target localization result in the normalized range
(image 4).



5. Conclusion

This paper focuses on the problem of ground target

localization from UAV images. SIFT features are used to

describe visual contents of the UAV images. Main con-

tributions of this paper lie in that 1) SIFT descriptors are

matched from UAV images and coarse positioning re-

sult, and location points are extracted from UAV images,

and 2) Coordinates in coarse positioning results are com-

puted from remote sensing images using the radiation

transformation model, and the ground target localization

is found from the coordinate transformation relation. Ex-

perimental results show very positive results.
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