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Abstract

Capacitated vehicle routing problem (CVRP) is a real life constraint satisfaction problem in

which customers are optimally assigned to individual vehicles (considering their capacity) to keep

total travel distance of the vehicles as minimum as possible while serving customers. Various methods

are used to solve CVRP in last few decades, among them the most popular way is splitting the task into

two different phases: assigning customers under different vehicles and then finding optimal route of

each vehicle. Sweep clustering algorithm is well studied for clustering nodes. On the other hand, route

optimization is simply a traveling salesman problem (TSP) and a number of TSP optimization methods

are applied for this purpose. This study investigates a variant of Sweep algorithm for clustering nodes

and different Swarm Intelligence (SI) based methods for route generation to get optimal CVRP

solution. In conventional Sweep algorithm, cluster formation starts from smallest angle and

consequently advances to consider all the nodes. In variant Sweep of this study, cluster formation are

considered from different starting angles. On the other hand, four TSP optimization methods including

recent ones are considered for route optimization. The experimental results on a large number of

benchmark CVRPs revealed that clustering with proposed variant Sweep and route optimization with

Velocity Tentative Particle Swarm Optimization is able to produce better solution. Finally, the

proposed mythology is found to achieve better solutions for several CVRPs when compared with

prominent existing methods.

Key Words: Capacitated Vehicle Routing Problem, Sweep Clustering, Genetic Algorithm,

Ant Colony Optimization, Producer-scrounger Method, Velocity Tentative Particle

Swarm Optimization

1. Introduction

Vehicle routing problem (VRP) is to determine opti-

mal routes for several vehicles to serve a number of cus-

tomers. In general, customers with known demands are

visited by a homogeneous fleet of vehicles with limited

capacity. Capacity constraint of vehicles limit the num-

ber of customers to serve in its route. Due to importance

of capacity constraint, the problem is alternatively called

capacitated VRP (CVRP) [1].

In general, CVRP considers one depot and several

vehicles with equal capacity. All vehicles depart from

the depot and return to the depot at the end. All custom-

ers have known demands and known locations for the

delivery. The delivery for a customer cannot be split

and must be satisfied via only one visit by a vehicle.

CVRP is a complex optimization task and its objective

is to minimize the total travelling distance for all vehi-

cles to serve all customers.

CVRP is a real life constraint satisfaction problem in
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which customers are optimally assigned to individual ve-

hicles (considering their capacity) to keep CVRP cost as

minimum as possible. Various methods are already stud-

ied to solve CVRP in last few decades; among them a

number of methods assign customer nodes under vehi-

cles and generate routes of vehicles together [2�5]. On

the other hand, the most popular way of solving CVRP is

splitting the task into two different phases: assigning

customers under different vehicles and then finding opti-

mal route of each vehicle [6�12]. Among several ways

for customer assignment, Sweep clustering algorithm is

widely used due to its simplicity. The algorithm calcu-

lates polar angles of all the nodes and then assigns nodes

into different clusters according to their angles. Finally, a

vehicle is assigned for each individual cluster nodes and

its route is optimized as of traveling salesman problem

(TSP).

A number of CVRP studies are available using tradi-

tional TSP optimization methods with Sweep clustering.

ASweep based CVRP is investigated for public transport

optimization in [6] where route optimization is accom-

plished using nearest neighbor algorithm. Another me-

thod, called Hybrid Heuristic Approach [12], also used

Sweep based node assignment and nearest neighbor al-

gorithm to generate optimal routes of individual vehi-

cles. The method applied on benchmark CVRPs. Sweep

with integer programming based TSP optimization is in-

vestigated in [8] for bus service optimization of an edu-

cation institute; 2-opt exchange is also used in the me-

thod to improve TSP routes.

Population based metaheuristic methods are found

efficient for TSP in the recent studies [13�17] and sev-

eral studies conceived such methods to generate optimal

vehicle route in solving CVRPs. In [7], genetic algo-

rithm is combined with Sweep algorithm to optimize

routes and hence produce CVRP solution. Ant colony

optimization (ACO) is the prominent Swarm Intelligence

(SI) method for TSP and adapted with Sweep in [10] for

solving CVRPs. In the method, ACO is used to generate

route among the nodes of individual vehicles assigned

by Sweep; and 3-opt local search is also used to ex-

change the vehicle’s nodes for further improvement of

the solutions. Particle Swarm optimization (PSO), the

most studied SI method in the recent time, is also used in

solving CVRPs. Standard PSO is used in [18] to opti-

mize routes from the outcome of Sweep algorithm. On

the other hand, a modified version of PSO, called Nested

PSO, is investigated in [11].

A few methods are also investigated for CVRPs with

modification in Sweep. Including time constraint, a mo-

dified Sweep algorithm is used to solve morning news-

paper delivery problem through CVRP in [19]. In [9], a

cluster adjustment is adapted with Sweep and Lin-Ker-

nighan heuristic TSP method is used to generate CVRP

solution. Recently, an extension of Sweep algorithm,

called Sweep Nearest (SN) algorithm, has been investi-

gated in [20]. SN combines the idea of Sweep and Near-

est Neighbor concept. SN considers sorted polar angle of

the nodes and starts a cluster with smallest polar angle

like Sweep; but it considers other customers to complete

the cluster which are nearer to the already assigned cus-

tomer(s). In the method, 2-opt edge exchange is used to

optimize each individual vehicle’s route.

The main objective of this study is to identify the

effective CVRP solving method. A variant version of

Sweep is considered in this study for better vehicle wise

clustering the nodes. Route optimization is a traveling

salesman problem; and therefore, prominent SI based

TSP methods, including most recent ones, are considered

in this study.

The outline of the paper is as follows. Section 2 ex-

plains variant Sweep algorithm and SI methods for route

optimization briefly. Section 3 is for experimental stud-

ies which presents as well as compares the outcomes of

the methods on a suite of benchmark CVRPs. At last,

section 4 gives a brief conclusion of the paper.

2. Solving CVRP Using Variant Sweep and

Swarm Intelligence

This section explains proposed CVRP solving me-

thod using variant Sweep and SI methods. At first it in-

vestigates deficiency of standard Sweep and explains

proposed variant Sweep clustering. To make the paper

self-contained, considered TSP route optimization me-

thods are also explained briefly.

2.1 Variant Sweep Clustering

It is already described in the previous section that

standard Sweep considers polar angle of nodes and ca-
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pacity of vehicle. In general, standard Sweep considers

depot located at (0,0) co-ordinate in two dimensional

plane. It first calculates polar angle of each individual

node and order the nodes according to polar angle. Fi-

nally, cluster formation starts from 0� and consequently

advances toward 360� to assign all the nodes under dif-

ferent vehicles considering vehicle capacity [8,18].

Problem with such rigid starting from 0� is identified that

total clusters formation may exceeds total number of

available vehicles for some instances. It is worth

mentionable that cluster formation may differ for differ-

ent starting angles and explores chance to get better

CVRP solution after route optimization.

Figure 1 demonstrates the inadequacy with standard

Sweep and its improvement way for a sample CVRP. The

CVRP consists with 10 nodes with different demands

around the depot and the total demand of the nodes 157

will be served vehicles having capacity 100. Figure 1(a)

shows the cluster formation with standard Sweep start-

ing from 0�: Cluster 1 covers demand 64 with two nodes,

Cluster 2 covers demand 80 with two nodes, Cluster 3

covers demand 95 with four nodes; and remaining de-

mand 18 is assigned to Cluster 4. Therefore, required

number of vehicles in standard Sweep is 4. But three ve-

hicles (total capacity 100*3 = 300) might be enough to

serve all the nodes having total demand 157. Figure 1(b)

shows cluster formation with Sweep technique but start-

ing from 90� in which all the nodes are assigned into

three clusters each one demand is below vehicle capac-

ity: Cluster 1 covers demand 80 with three nodes, Cluster

2 covers demand 95 with four nodes, Cluster 3 covers re-

maining three nodes with demand 82. Three clusters also

found sufficient to cover all the nodes for starting angle

135�. It is obvious that total CVRP cost for three vehicles

will be less than the cost for four vehicles. Therefore, this

study considers the starting angle of cluster formation as

user defined parameter and the method called variant

Sweep.

Algorithm 1 shows the steps of proposed variant

Sweep algorithm. First three steps of the initialization

section are same as standard Sweep: update nodes’ coor-

dinates considering depot location as (0,0), compute po-

lar angle of each node and order the nodes according to

polar angle to a list ONL. The basic difference of the pro-

posed variant method takes starting angle of cluster for-

mation (�s) as user defined parameter.

Algorithm 1: Variant Sweep Algorithm

1. Initialization

a. Update coordinates of the nodes considering depot

as (0,0).

b. Compute the polar angle of each node.

c. Order the nodes according to polar angle, ONL.

d. Take starting angle of cluster formation, �s.

e. Cluster C = 1.

2. Clustering

a. Identify position of �s in ONL.

b. Sweeping nodes to current cluster C by increasing
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polar angle.

c. Stop when adding the next node would exceed vehi-

cle capacity.

d. Create a new cluster C+1 by resuming the sweep

where the last one left off.

e. Repeat Steps 2b-2d, until all customers have been

included in a cluster.

Outcome

All the nodes are assigned into total C clusters.

Cluster formation starts in variant Sweep from the

defined angle �s and nodes are assigned into different

clusters considering vehicle capacity. First the method

identifies the position of �s in ONL (Step 2a). As like

standard Sweep, variant method assigns nodes into a

cluster while vehicle capacity does not exceed (Steps 2b

and 2c) otherwise new cluster forms for unassigned

nodes (Step 2d). Since the variant Sweep may starts any

location of ONL, Step 2e transforms node assignment

from bottom of ONL to the beginning of ONL. It is nota-

ble that for �s = 0� the proposed method will be standard

Sweep.

2.2 Optimal Vehicle Route Generation

In solving CVRP, optimal route generation of each

individual vehicle is a crucial part while any clustering

method is used to cluster nodes. In general, a clustering

method divides total CVRP nodes into clusters, whereby

number of clusters is equal to the number of vehicles.

The aim of route generation is the optimal path finding of

each vehicle starting from the depot and returning to de-

pot after serving all of its assigned nodes. Therefore,

route generation of individual vehicle is simply a small

sized TSP considering the depot as a common city point;

and any TSP optimization method may be used for this

purpose. To generate route for a vehicle, a TSP cost ma-

trix considering nodes for a particular vehicle is prepared

and then a TSP optimization is employed to work with

the cost matrix as an independent TSP. More specifically,

in sample case of Figure 1(b), Cluster 1 belongs nodes 4,

5, 6 and 7 for �s = 135� and therefore algorithm will pre-

pare TSP cost matrix of five cities including depot as a

TSP city. Algorithm 2 depicts the steps of vehicle route

generation of individual vehicles and provide CVRP

solution.

Algorithm 2: Vehicle Route Generation

1. Input

Vehicle wise nodes from variant Sweep clustering

with Algorithm 1.

2. Route Generation for Each Vehicle

a. Include depot as a node in the cluster.

b. Prepare a TSP cost matrix with the nodes of the

cluster.

c. Employ TSP optimization method to generate opti-

mal route for the vehicle.

Outcome

CVRP solution with optimal routes of all the vehi-

cles.

Figure 2 illustrates the complete flowchart of CVRP

solving method integrating Algorithm 1 and Algorithm

2. The initialization step accomplishes preprocessing of

given data of a problem as well as setting of SI algorithm

parameters. SI method takes vehicle wise clusters from

variant Sweep and generates TSP routes of clusters indi-

vidually. Finally, CVRP solution is achieved with the

TSP routes of individual vehicles.

In this study, three prominent SI based methods are

investigated for route optimization. Genetic algorithm is

also considered along with SI methods as it is a promi-

nent and pioneer optimization method. Among the SI

methods, ant colony optimization is the well-known pro-

minent method for TSP; and producer-scrounger method

and velocity tentative particle swarm optimization are

two very recent well performed methods for TSP. Brief

descriptions of the methods are explained in the follow-

ing subsections to make the paper self-contained.
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2.2.1 Genetic Algorithm (GA)

GA is the pioneer optimization method inspired by

biological systems’ fitness improvement through evolu-

tion [13]. Common features of GA are: populations of

chromosomes (i.e., solutions), selection according to fit-

ness, crossover to produce new offspring, and random

mutation of new offspring. GA is used to solve various

optimization tasks and a number of studies used GA with

different modifications in solving vehicle routing prob-

lems [4,7,21,22].

2.2.2 Ant Colony Optimization (ACO)

ACO is the prominent SI based search and optimiza-

tion method based on the behavior of ants while seeking

the shortest path between their colony and a food source

through an indirect interaction via pheromone on the

path [14]. In solving TSP, a particular ant considers next

city to visit based on the visibility heuristic (i.e., inverse

of distance) and intensity of the pheromone on the path.

After the completion of a tour, each ant lays some phe-

romone on the path. Pheromone evaporation is also

adopted by reducing pheromone of all the links which al-

lows the artificial ants to forget bad choices made in the

past. Finally, all the ants follow the same route after cer-

tain iteration. A large number of studies are available

with ACO and its variants to solve TSP [14,15] and oth-

ers scheduling problems including CVRPs [3,10,23,24].

2.2.3 Producer-scrounger Method (PSM)

PSM [17] is a new SI technique to solve TSP inspir-

ing from the animal group living behavior. It models

roles and interactions of three types of animal group

members: producer, scrounger and dispersed [25]. PSM

considers a producer having the best tour, few dispersed

members having worse tours and scroungers. In each it-

eration, the producer scans for better tour, scroungers ex-

plore new tours while moving toward producer’s tour;

and dispersed members randomly check new tours. For

producer’s scanning, PSM randomly selects a city from

the producer’s tour and rearranges its connection with

several near cities for better tours. Swap operator (SO)

and swap sequence (SS) based operation is employed in

PSM to update a scrounger towards the producer. ASS is a

collection of several SOs and each one indicates two posi-

tions in a tour those might be swapped. Finally, producer

is consider as the TSP solution of a given problem. The

detailed description of PSM for TSP is available in [17].

2.2.4 Velocity Tentative Particle Swarm

Optimization (VTPSO)

Particle swarm optimization (PSO) is a popular opti-

mization method on metaphor of social behavior of

flocks of birds or schools of fishes [26]. In PSO, each

particle represents a potential solution and moves to a

new position (i.e., search a new point) at every iteration

based on the calculated velocity. PSO was proposed for

continuous problems (e.g., function optimization) and

has been proven to solve such problems effectively. It

has also been found as an efficient method to solve com-

binatorial problems such as TSP [27�29]. To solve TSP

with PSO, each particle represents a complete tour as a

feasible solution and velocity is a measure to update the

tour for better solution. A number of studies are also used

PSO with different modifications in solving different ve-

hicle routing problems [2,5,11,18,30,31]. In this study,

VTPSO [29], the most recent TSP solving version of

PSO, has been employed to solve CVRP. VTPSO calcu-

lates velocity SS similar to existing method [27] but ap-

ply the SS in a different and optimal way. It conceives

partial search (PS) technique to apply calculated SS to

update particle’s position (i.e., TSP tour) and conceive

comparatively better new tour with a portion or full SS.

The detailed description of VTPSO for TSP is available

in [29].

3. Experimental Studies

This section experimentally investigates the efficacy

of variant Sweep algorithm and SI methods in solving

benchmark CVRPs. Finally, an experimental analysis

has been given for better understanding of the way of

performance improvement in proposed method for solv-

ing CVRP.

3.1 Benchmark Data and General Experimental

Methodology

In this study, total 51 benchmark CVRPs from two

different sets of Augerat benchmark problems [32] of

A-VRP and P-VRP have been considered. In A-VRP,

number of customers varies from 32 to 80, total demand
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varies from 407 to 942, number of vehicles varies from 5

to 10 and capacity of individual vehicle is 100 for all the

problems. For example, A-n32-k5 has 32 customers and

5 vehicles. On the other hand, in P-VRP, number of cus-

tomers varies from 16 to 101, total demand varies from

246 to 22500 and vehicle capacity varies from 35 to

3000. The numeric value in a problem name presents the

number of customer nodes and vehicles. The detailed de-

scription of the problems are available in provider’s

website [32]. The selected benchmark problems belongs

large varieties in number of nodes, vehicles and de-

mands; and therefore, provides a diverse test bed.

A customer node is represented as a co-ordinate in a

problem. Therefore, the cost is found after calculating

distance using the coordinates. The variant Sweep algo-

rithm applied on each problem for different starting angles

(�s) and those are 0�, 45�, 90�, 135�, 180�, 225�, and 270�.

It is notable that conventional Sweep only considers �s =

0� for clustering.

A CVRP solution is considered after route optimiza-

tion using GA, ACO, PSM or VTPSO. A fair experimen-

tal setting is maintained for each optimization method

for better outcome in route optimization. In GA, en-

hanced edge recombination cross over is used and the

positions of two nodes are interchanged for mutation op-

eration. In ACO, alpha and beta are set to 1 and 3, respec-

tively. On the other hand, the RNC (rate of near cities

consideration) for producer scanning in PSM is set to

0.1. The algorithms are implemented on Visual C++ of

Visual Studio 2013. The experiments have been carried

out on a PC (Intel Core i5-3470 CPU @ 3.20 GHz CPU,

4GB RAM) with Windows 7 OS.

3.2 Detailed Experimental Observation on a Problem

This section presents detailed results for problem

A-n53-k7. The population size of GA, PSM and VTPSO

is 100; whereas, number of ants in ACO is equal to the

number of nodes assigned to a vehicle as it desire. The

number of iteration is set at 200 for the algorithms. Ta-

ble 1 shows the total clusters for different starting an-

gles (�s) in variant Sweep and optimized route costs with

different methods for A-n53-k7 problem. The problem

has 53 nodes and total 664 demand to be served with

seven vehicles having capacity 100. From the table it is

observed that total number of clusters for �s = 0� (i.e., in

standard Sweep) is 8 which is more than available vehi-

cles. Total clusters are also 8 for �s = 45�, 225� and 270�.

On the other hand, number of clusters is equal to total ve-

hicles (i.e., 7) for �s = 90�, 135� and 180�. It is also re-

markable that total travel distances (i.e., CVRP costs) for

7 clusters are lower than the cases of 8 for route optimi-

zation with any method. The best CVRP cost for an algo-

rithm for different �s is marked as bold-faced type. For the

problem the best travel cost achieved after optimizing

with GA, ACO, PSM and VTPSO are 1091, 1132, 1190

and 1090, respectively. The best values are found for �s =

180� where total cluster was 7. These results clearly indi-

cate that variant Sweep starting with different angle has a

positive effect on cluster formation and hence CVRP so-

lution.

Figure 3 is the graphical representation of the solu-

tion of A-n53-k7 for standard Sweep clustering (i.e., �s =

0�). The solution is infeasible because total clusters are

eight against available seven vehicles. Cluster 8 covers

only three nodes having total demand 29. Moreover, GA,

PSM and VTPSO gave same solution with CVRP cost

1174 as shown in Figure 3(a). On the other hand, the

CVRP cost for ACO is 1211 as seen in Figure 3(b). In

some clusters, such as Cluster 4 and Cluster 6, ACO

showed bad route cost. The reason might be inclination

with pheromone in ACO.

Figure 4 is the graphical representation of the solu-

tion of A-n53-k7 problem for variant Sweep clustering

for �s = 180�. In this case total demand is fulfilled by

seven clusters that is equal to number of vehicles. Among

the four route optimization methods, CVRP cost with

ACO is the worst and the value is 1132. Similar to stan-

dard Sweep, it achieved worse solution for Cluster 4 and

Cluster 6. The best CVRP solution for the problem is
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Table 1. Clusters for different starting angle (�s) in
variant Sweep and CVRP cost using GA, ACO,
PSM and VTPSO for A-n53-k7 problem

CVRP cost with
�s Clusters

Before route
optimizing GA ACO PSM VTPSO

0� 8 1604 1174 1211 1174 1174
45� 8 1571 1172 1207 1165 1165
90� 7 1654 1135 1152 1109 1109
135� 7 1654 1132 1160 1109 1109
180� 7 1504 1091 1132 1090 1090
225� 8 1558 1142 1184 1147 1142
270� 8 1775 1171 1195 1171 1171



achieved by PSM and VTPSO; and achieved CVRP cost

is 1090. On the other hand, GAis showed competitive re-

sult with PSM/VTPSO achieving CVRP cost 1091; it

differs only for Cluster 3 with different assignments of

node 12. Finally, the comparative description with gra-

phical representation in Figures 3 and 4 clearly depicted

the superiority of proposed variant Sweep over standard

Sweep.

3.3 Experimental Results and Performance

Comparison

This section first identifies the proficiency of variant

Sweep clustering over standard Sweep clustering while

using GA, ACO, PSM and VTPSO for route optimiza-

tion. Finally, the outcome of the proposed method com-

pares with the prominent methods in solving benchmark

CVRPs. The population size of GA, PSM and VTPSO

was 100; whereas, number of ants in ACO was equal to

the number of nodes assigned to a vehicle. For the fair

comparison, the number of iteration was set at 200 for the

algorithms. The selected parameters are considered for

simplicity as well as for fairness in observation.

Table 2 compares CVRP costs for clustering with

standard Sweep and variant Sweep on A-VRP bench-

mark problems. Bottom of the table shows average and

best/worst summary over all 27 problems. The results

presented for variant Sweep with best result from seven

different starting angles clustering. On the other hand,

standard Sweep is for only clustering with �s = 0�. From

the Table 2, it is observed that any method based on vari-
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Figure 3. Graphical representation of A-n53-k7 solution with
standard Sweep clustering (i.e., �s = 0�).

Figure 4. Graphical representation of A-n53-k7 solution with
variant Sweep clustering with �s = 180�.



ant Sweep outperformed its corresponding standard Sweep

clustering. For a particular optimization method, if a

variant Sweep is found better than standard Sweep, it

placed as italic font. The route optimization with GA,

ACO, PSM and VTPSO on variant Sweep outperformed

corresponding standard Sweep in 19, 19, 19 and 17 cases

out of 27 cases, respectively. It is notable that for a par-

ticular route optimization (e.g., GA), the outperformance

of variant Sweep over standard Sweep is only for differ-

ent starting angles in variant Sweep. On the other hand,

GA, ACO, PSM and VTPSO achieved average CVRP

cost of 1169.48, 1195.33, 1169.19 and 1168.63, respec-

tively. Among variant Sweep based methods, PSM and

VTPSO outperformed GA and ACO. Finally, CVRP so-

lutions with VTPSO are found better than any other me-

thods showing best outcomes (i.e., minimum CVRP costs)

for all 27 problems.

Table 3 shows the comparison of CVRP costs for

clustering with standard Sweep and variant Sweep on

P-VRP benchmark problems. Bottom of the table shows

summary of result presented for 24 problems. The result

presented for variant Sweep is the best result from seven

different starting angles. As like A-VRP problems, CVRP

costs for variant Sweep are found better than or at least

equal to standard Sweep for all 24 problems. The CVRP

costs with variant Sweep are found better than standard

Sweep in 17, 20, 17 and 17 cases out of 24 cases for GA,

ACO, PSM and VTPSO, respectively. GA, ACO, PSM

and VTPSO achieved average CVRP cost of 642.29,

653.46, 638.13 and 633.17, respectively. VTPSO and

PSM showed minimum CVRP costs for all 24 problems

and 20 cases, respectively. At a glance, CVRP costs with
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Table 2. CVRP cost comparison for clustering with standard Sweep and variant Sweep on A-VRP benchmark problems

Clustering with standard Sweep Clustering with variant Sweep
Sl. Problem

GA ACO PSM VTPSO GA ACO PSM VTPSO

1 A-n32-k5 882 897 882 882 882 897 882 882
2 A-n33-k5 788 808 788 788 698 719 698 698
3 A-n33-k6 874 877 874 874 751 758 751 751
4 A-n34-k5 867 897 867 867 785 804 785 785
5 A-n36-k5 945 965 942 942 884 917 881 881
6 A-n37-k5 795 840 795 795 739 766 746 739
7 A-n37-k6 1131 1141 1131 1131 1097 1116 1097 1097
8 A-n38-k5 874 907 874 874 813 844 813 813
9 A-n39-k5 881 918 877 877 878 912 877 877
10 A-n39-k6 997 997 991 991 969 981 975 969
11 A-n44-k6 1165 1229 1164 1164 1056 1116 1056 1056
12 A-n45-k6 1117 1141 1115 1115 1073 1081 1075 1073
13 A-n45-k7 1343 1386 1343 1343 1343 1380 1343 1343
14 A-n46-k7 1026 1085 1026 1026 990 1033 990 990
15 A-n48-k7 1152 1165 1152 1152 1152 1165 1152 1152
16 A-n53-k7 1174 1212 1174 1174 1091 1132 1090 1090
17 A-n54-k7 1361 1374 1366 1361 1361 1374 1361 1361
18 A-n55-k9 1201 1215 1201 1201 1201 1215 1201 1201
19 A-n60-k9 1556 1606 1553 1553 1503 1528 1503 1503
20 A-n61-k9 1219 1238 1219 1219 1219 1238 1219 1219
21 A-n62-k8 1533 1565 1532 1532 1501 1532 1501 1501
22 A-n63-k9 1826 1856 1823 1823 1823 1852 1823 1823
23 A-n63-k10 1551 1571 1551 1551 1461 1478 1446 1446
24 A-n64-k9 1598 1622 1598 1598 1598 1622 1598 1598
25 A-n65-k9 1382 1405 1380 1380 1317 1339 1317 1317
26 A-n69-k9 1254 1280 1254 1254 1254 1280 1252 1252
27 A-n80-k10 2139 2195 2137 2136 2137 2195 2136 2136

Average 1208.56 1236.74 1207.74 1207.52 1169.48 1195.33 1169.19 1168.63

Outperformance of variant Sweep over corresponding standard
Sweep based method

19 19 19 17

Best count 21 0 24 27



VTPSO are found best among the methods and PSM is

shown competitive to VTPSO.

To identify the proficiency of proposed variant Sweep

(vSweep) based approach, its outcome have been com-

pared with prominent CVRP methods. Among the se-

lected methods, Hybrid Heuristic Approach [12], Sweep

+Cluster Adjustment [9] and Sweep Nearest [20] are also

used Sweep based clustering to assign nodes to different

vehicles but followed different approaches for route gen-

eration of individual vehicles. Hybrid Heuristic Ap-

proach [12] is the most recent CVRP method which used

nearest neighbor method for route optimization. Cen-

troid-based 3-phase [9] method is also considered in re-

sult comparison because it also found an effective me-

thod to solve similar benchmark CVRPs. The method

follows three different steps: cluster formation with cen-

troid based approach from the farthest point, centroid

based cluster adjustment and finally route generation us-

ing Lin-Kernighan heuristic method.

Table 4 and Table 5 compare outcome of vSweep

based method with the selected exiting methods in solv-

ing A-VRP and P-VRP benchmark problems. Among the

existing methods, outcomes of Sweep Nearest are not

available for several cases which are marked with ‘-’. In

the comparison, vSweep+VTPSO (i.e., VTPSO with va-

riant Sweep) is considered as a proposed method since it

outperformed others vSweep based methods. The pre-

sented results of vSweep+VTPSO are collected from Ta-

ble 2 and Table 3. On the other hand, results of the exist-

ing methods are the reported results in corresponding pa-

pers. The best (i.e., minimum) CVRP cost among the five

methods for a particular problem is marked as bold face
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Table 3. CVRP cost comparison for clustering with standard Sweep and variant Sweep on P-VRP benchmark problems

Clustering with standard Sweep Clustering with variant Sweep
Sl. Problem

GA ACO PSM VTPSO GA ACO PSM VTPSO

1 P-n16-k8 595 595 595 595 553 557 553 553

2 P-n19-k2 239 242 236 236 239 242 236 236

3 P-n20-k2 242 257 238 238 242 249 238 238

4 P-n21-k2 241 261 238 238 211 217 211 211

5 P-n22-k2 243 266 237 237 219 228 217 216

6 P-n22-k8 688 690 688 688 649 649 649 649

7 P-n23-k8 687 687 687 687 634 636 634 634

8 P-n40-k5 509 525 509 509 474 482 474 474

9 P-n45-k5 528 572 528 528 524 537 523 523

10 P-n50-k7 599 615 599 599 579 600 579 579

11 P-n50-k8 692 718 692 692 677 704 677 677

12 P-n50-k10 783 790 783 783 783 790 783 783

13 P-n51-k10 807 835 807 807 802 822 802 802

14 P-n55-k7 616 634 613 613 593 624 593 593

15 P-n55-k8 612 635 611 611 585 613 585 585

16 P-n55-k10 742 762 742 742 742 759 742 742

17 P-n55-k15 1133 1140 1133 1133 1099 1108 1099 1099

18 P-n60-k10 835 868 835 835 830 863 830 830

19 P-n60-k15 1092 1113 1092 1092 1092 1113 1092 1092

20 P-n65-k10 864 932 864 864 837 893 837 837

21 P-n70-k10 900 928 900 900 900 928 900 900

22 P-n76-k4 654 638 633 603 651 635 633 603

23 P-n76-k5 681 697 685 655 681 673 671 649

24 P-n101-k4 831 785 799 728 819 761 757 691

Average 658.88 674.38 656 650.54 642.29 653.46 638.13 633.17

Outperformance of variant Sweep over corresponding standard

Sweep based method
17 20 17 17

Best count 17 1 20 24



type. Bottom of a table also shows pairwise win/draw/

lose summary among the methods for better understand-

ing. According to Table 4 for A-VRP benchmark prob-

lems, Centroid-based 3-phase is the overall best and Hy-

brid Heuristic Approach is the worst showing average

CVRP costs 1134.67 and 1310.11, respectively. On the

other hand, proposed vSweep+VTPSO is shown com-

petitive to Centroid-based 3-phase showing average CVRP

cost 1168.63. On the basis of best individual count,

Sweep Nearest is the best showing minimum CVRP

costs for 12 cases among its available results for 24

cases. The proposed method showed best CVRP solu-

tions for five cases and outperformed Sweep Nearest for

8 cases out of 24 cases. More interesting, the proposed

method outperformed Hybrid Heuristic Approach, Sweep

+Cluster Adjustment and Centroid-based 3-phase for 27,

14 and 8 cases, respectively, out of 27 cases.

The comparative results presented in Table 5 identi-

fied the proposed vSweep+VTPSO is the best for P-VRP

benchmark problems. The proposed method is shown the

best for 12 cases out of 24 cases and achieved average

cost of 633.17. The proposed method outperformed Hy-

brid Heuristic Approach, Centroid-based 3-phase, Sweep

+Cluster Adjustment on 23, 15 and 15 cases, respec-

tively, out of 24 cases. On the other hand, results for

Sweep Nearest are available for only 10 problems and

the proposed method outperformed it for six cases. Be-

tween two exiting Sweep based methods, Hybrid Heuris-
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Table 4. CVRP cost comparison with existing methods on A-VRP benchmark problems

Sl. Problem
Hybrid heuristic

[12]
Centroid-based

3-phase [9]
Sweep + cluster
adjustment [9]

Sweep nearest
[20]

vSweep +
VTPSO

1 A-n32-k5 1012 881 872 853 882
2 A-n33-k5 847 728 788 702 698
3 A-n33-k6 919 770 829 767 751
4 A-n34-k5 933 812 852 803 785
5 A-n36-k5 1126 814 884 840 881
6 A-n37-k5 876 756 734 797 739
7 A-n37-k6 1180 1027 1050 966 1097
8 A-n38-k5 920 819 874 801 813
9 A-n39-k5 1147 864 971 886 877
10 A-n39-k6 1065 881 966 - 969
11 A-n44-k6 1356 1037 1092 1020 1056
12 A-n45-k6 1210 1040 1043 991 1073
13 A-n45-k7 1361 1288 1281 1235 1343
14 A-n46-k7 1071 992 1013 1022 990
15 A-n48-k7 1292 1145 1143 1181 1152
16 A-n53-k7 1261 1117 1116 - 1090
17 A-n54-k7 1414 1209 1320 - 1361
18 A-n55-k9 1317 1155 1192 1134 1201
19 A-n60-k9 1733 1430 1574 1446 1503
20 A-n61-k9 1285 1201 1184 1158 1219
21 A-n62-k8 1604 1470 1559 1392 1501
22 A-n63-k9 2001 1766 1823 1763 1823
23 A-n63-k10 1542 1405 1523 1475 1446
24 A-n64-k9 1821 1587 1597 1586 1598
25 A-n65-k9 1429 1276 1351 1299 1317
26 A-n69-k9 1333 1283 1254 1225 1252
27 A-n80-k10 2318 1883 2014 1896 2136

Average 1310.11 1134.67 1181.44 1134.92 1168.63
Best/worst 0/27 8/0 2/0 12/0 5/0

Pairwise win/draw/lose summary

Hybrid heuristic - 27/0/0 27/0/0 24/0/0 27/0/0
Centroid-based 3-phase - 7/0/20 15/0/9 8/0/19
Sweep + cluster adjust. - 21/0/3 14/1/12

Sweep nearest - 8/0/16



tic Approach outperformed proposed method only for

P-n16-k8 that is very small sized problem and Sweep+

Cluster Adjustmentis found better than proposed method

for only six cases. Finally, outcomes of vSweep+VTPSO

identified the proficiency of variant Sweep in clustering

and VTPSO in route optimizing.

3.4 Experimental Analysis

The results presented in Table 2 and Table 3 are for

fixed population and iteration in the TSP optimization

technique; and therefore it is required to investigate vari-

ation effect of population and iteration on CVRP cost.

The effect of population size on route optimizing has

been investigated for A-n53-k7 problem with vSweep

clustering for �s = 180�. Population size was varied from

5 to 100 for GA, PSM and VTPSO. On the other hand,

the number of ants in ACO was equal to the number of

nodes in a cluster; therefore varied cluster to cluster. Fig-

ure 5 shows CVRP cost for population variation for fixed

100 iteration for fair comparison. The number of clusters

(i.e., vehicles) were 7. From the figure it is observed that

CVRP cost is invariant for ACO because population

variation was not employed for it. On the other hand, GA

is most sensitive with population size: CVRP cost th-

rough GA was very bad with respect to others at small

population size (e.g., 5) and was competitive at larger

population size. From the figure it also observed that

PSM and VTPSO (the recent SI methods) are better than
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Table 5. CVRP cost comparison with existing methods on P-VRP benchmark problems

Sl. Problem
Hybrid heuristic

[12]

Centroid-based

3-phase [9]

Sweep + cluster

adjustment [9]

Sweep nearest

[20]

vSweep +

VTPSO

1 P-n16-k8 546 497 568 463 553

2 P-n19-k2 253 256 236 264 236

3 P-n20-k2 267 240 238 217 238

4 P-n21-k2 288 240 238 211 211

5 P-n22-k2 274 245 237 219 216

6 P-n22-k8 667 672 687 721 649

7 P-n23-k8 743 703 645 558 634

8 P-n40-k5 563 505 499 516 474

9 P-n45-k5 662 533 525 - 523

10 P-n50-k7 647 583 585 - 579

11 P-n50-k8 721 669 675 - 677

12 P-n50-k10 808 740 779 - 783

13 P-n51-k10 857 779 806 - 802

14 P-n55-k7 679 610 611 - 593

15 P-n55-k8 690 654 601 - 585

16 P-n55-k10 832 749 763 - 742

17 P-n55-k15 1180 1022 1056 - 1099

18 P-n60-k10 896 786 823 - 830

19 P-n60-k15 1159 1006 1086 - 1092

20 P-n65-k10 964 836 856 - 837

21 P-n70-k10 989 891 902 - 900

22 P-n76-k4 753 685 603 690 603

23 P-n76-k5 671 737 647 - 649

24 P-n101-k4 891 698 702 789 691

Average 708.33 639.00 640.33 464.80 633.17

Best/Worst 0/20 9/2 4/2 4/0 12/0

Pairwise win/draw/lose summary

Hybrid heuristic - 21/0/3 22/0/2 8/0/2 23/0/1

Centroid-based 3-phase - 10/0/14 5/0/5 15/0/9

Sweep + cluster adjust. - - 5/0/5 15/3/6

Sweep nearest - 6/1/3



ACO and GA in population variation. At a glance VTPSO

is shown to outperform any other method for any popu-

lation size and PSM is competitive to VTPSO.

Figure 6 shows CVRP cost varying iteration from 10

to 200 while population size was fixed at 50 for GA,

PSM and VTPSO. Similar to previous experiments, the

number of ants in ACO was equal to the number of nodes

in a cluster while iteration varied from 10 to 200. From

the figure it is observed that CVRP cost was high at small

iteration (e.g., 10) and improved with iteration, in gen-

eral. However, GA is shown very worse than others for

small number of iteration. It is also observed from the

figure that PSM and VTPSO are better than ACO and

GA in iteration variation.

4. Conclusions

CVRP is a popular combinatorial optimization prob-

lem and interest grows in recent years to solve it in best

possible ways. A popular way of solving CVRP is cluster

the nodes according to vehicles using Sweep algorithm

first and then generate route for each vehicle with TSP

algorithm. In general, Sweep cluster construction starts

from the node having lowest polar angle. This study con-

siders a variant of Sweep which takes starting angle as a

user defined parameter and produces different clusters

for a given problem. Different optimization techniques

such as GA, ACO, PSM and VTPSO are applied to gen-

erate optimal routes of individual clusters. The experi-

mental results on the benchmark problems revealed that

different starting angle have positive effect on Sweep

clustering and VTPSO is better than other optimization

methods to solve CVRP. Finally, VTPSO with variant

Sweep is identified as a prominent CVRP solving me-

thod when compared with related existing methods.
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