Jinshan Wang1,2 and Zengcai Wang This email address is being protected from spambots. You need JavaScript enabled to view it.1,2

1School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
2Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Jinan 250061, P.R. China


 

Received: March 1, 2017
Accepted: May 8, 2017
Publication Date: September 1, 2017

Download Citation: ||https://doi.org/10.6180/jase.2017.20.3.13  

ABSTRACT


In order to improve the efficiency of the bi-stable piezoelectric energy harvester (BEH), a double bi-stable energy harvester (DBEH) is proposed. The four piezoelectric cantilever beams which have a magnet in free end are put together. So each magnet is subjected to three force of magnetic repulsion. It can pull down the potential barrier and can make it easier to jump between potential wells. The double bi-stable energy harvester can realize snap-through at lower excitation than bi-stable energy harvester. The potential energy and the electro-mechanical equation of the DBEH are derived. Simulations and validation experiments are designed and carried out. The simulation results show that double bi-stable energy harvester can harvest more energy than bi-stable piezoelectric energy harvester at different levels of excitations. The experimental results are in agreement with the simulations, which prove that the double bi-stable energy harvester is preferable to bi-stable piezoelectric energy harvester in harvesting energy from random vibration.


Keywords: Double Bi-stable Energy Harvester, Dynamic Response, Output Voltage


REFERENCES


  1. [1] Harne, R. L. and Wang, K. W., “A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems,” Smart Mater. Struct, Vol. 22, 023001 (2013). doi: 10.1088/0964-1726/22/2/023001
  2. [2] Triplett, A. and Quinn, D. D., “The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting,” J. Intell. Mater. Syst. Struct, Vol. 20, pp. 19591967 (2009). doi: 10.1177/1045389X09343218
  3. [3] Vocca, H., Neri, I., et al., “Kinetic Energy Harvesting with Bistable Oscillators,” Appl. Energy, Vol. 97, pp. 771–776 (2012). doi: 10.1016/j.apenergy.2011.12.087
  4. [4] Tang, L., Yang, Y. and Soh, C. K., “Improving Functionality of Vibration Energy Harvesters Using Magnets,” J. Intell. Mater. Syst. Struct, Vol. 23, pp. 1433– 1449 (2012). doi: 10.1177/1045389X12443016
  5. [5] Scruggs, J. T., “An Optimal Stochastic Control Theory for Distributed Energy Harvesting Networks,” J. Sound. Vib, Vol. 320, pp. 707725 (2009). doi: 10.1016/j.jsv. 2008.09.001
  6. [6] Erturk, A., Hoffmann, J. and Inman, D. J. “A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting,” Appl. Phys. Lett., Vol. 94, 254102 (2009). doi: 10.1063/1.3159815
  7. [7] Ferrari, M., Ferrari, V., et al., “Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters,” Sens. Actuators A, Vol. 162, pp. 425431 (2010). doi: 10.1016/j.sna.2010.05.022
  8. [8] Ramlan, R., Brennan, M. J., et al., “Potential Benefits of a Non-linear Stiffness in an Energy Harvesting Device,” Nonlinear Dyn., Vol. 59, pp. 545558 (2010). doi: 10.1007/s11071-009-9561-5
  9. [9] Daqaq, M. F., “On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting under White Gaussian Excitations,” Nonlinear Dyn., Vol. 69, pp. 10631079 (2012). doi: 10.1007/s11071-012-0327-0
  10. [10] Pellegrini, S. P., Tolou, N., et al., “Bistable Vibration Energy Harvesters: a Review,” J. Intell. Mater. Syst. Struct, Vol. 24, pp. 1303–1312 (2013). doi: 10.1177/ 1045389X12444940
  11. [11] Daqaq, M. F., Stabler, C., et al., “Investigation of Power Harvesting via Parametric Excitations,” J. Intell. Mater. Syst. Struct, Vol. 20, pp. 545557 (2008). doi: 10.1177/1045389X08100978
  12. [12] Daqaq, M. F., “Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise,” J. Sound. Vib., Vol. 330, pp. 25542564 (2011). doi: 10.1016/j.jsv.2010.12.005
  13. [13] Cotton, F., Vocca, H., et al., “Nonlinear Energy Harvesting,” Phys. Rev. Lett., Vol. 102, 080601 (2009). doi: 10.1103/PhysRevLett.102.080601
  14. [14] Litak, G., Friswell, M. I. and Adhikari, S., “Magnetopiezoelastic Energy Harvesting Driven by Random Excitations,” Appl. Phys. Lett., Vol. 96, 214103 (2010). doi: 10.1063/1.3436553
  15. [15] Ali, S. F., Adhikari, S., et al., “The Analysis of Piezomagnetoelastic Energy Harvesters under Broadband Random Excitations,” J. Appl. Phys., Vol. 109, 74904 (2011). doi: 10.1063/1.3560523
  16. [16] De Paula, A. S., Inman, D. J. and Savi, M. A., “Energy Harvesting in a Nonlinear Piezomagnetoelastic Beam Subjected to Random Excitation,” Mech. Syst. Signal Process, Vol. 5455, pp. 405416 (2015). doi: 10. 1016/j.ymssp.2014.08.020
  17. [17] Lin, J. T., Lee, B. and Alphenaar, B., “The Magnetic Coupling of a Piezoelectric Cantilever for Enhanced Energy Harvesting Efficiency,” Smart Mater. Struct, Vol. 19, 045012 (2010). doi: 10.1088/0964-1726/19/ 4/045012
  18. [18] Zhao, S. and Erturk, A., “On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Trade offs in a Physical System,” Appl. Phys. Lett., Vol. 102, 103902 (2013). doi: 10.1063/1.4795296
  19. [19] Gao, Y. J., Leng, Y. G., et al., “Performance of Bistable Piezoelectric Cantilever Vibration Energy Harvesters with an Elastic Support External Magnet,” Smart Mater. Struct, Vol. 23, 095003 (2014). doi: 10.1088/ 0964-1726/23/9/095003
  20. [20] Leng, Y. G., Gao, Y. J., et al., “An Elastic-support Model for Enhanced Bistable Piezoelectric Energy Harvesting from Random Vibrations,” J. Appl. Phys, Vol. 117, 64901 (2015). doi: 10.1063/1.4907763