Huimin Luo1,2, Chaokun Yan 1 and Zhigang Hu2
1School of Computer and Information Engineering, Henan University, Kaifeng, P.R. China
2School of Information Science and Engineering, Central South University, Changsha, P.R. China
Received:
February 18, 2013
Accepted:
January 12, 2015
Publication Date:
March 1, 2015
Download Citation:
||https://doi.org/10.6180/jase.2015.18.1.09
ABSTRACT
Deadline guarantee is an important QoS requirement for some critical scientific workflow applications. However, the resource heterogeneity and the unpredictable workloads make it difficult for grid system to provide efficient deadline-guarantee service for those applications. Recent IaaS providers, such as Amazon’s EC2, provide virtualized on-demand computing resources on a pay-per-use model, which can be aggregated to the existing grid resource pool to enhance deadline-guarantee of scientific workflow. In this paper, a novel workflow scheduling algorithm DGESA is proposed. First, we evaluate the degree of deadline-guarantee for subtasks of workflow in grid system based on proposed probabilistic deadline guarantee model. Then, proper cloud resources are selected as an accelerator to enhance the deadline-guarantee of subtasks. The experimental results show that proposed algorithm achieves better performance than other algorithms on user’s deadline guarantee.
Keywords:
Scientific Workflow, IaaS, Grid, Scheduling, Stochastic Service Model
REFERENCES
- [1] Gentzsch, W., Girou, D., Kennedy, A., et al., “DEISADistributed European Infrastructure for Supercomputing Applications,” Journal of Grid Computing, Vol. 9, No. 2, pp. 259277 (2011). doi: 10.1007/s10723-011-9183-2
- [2] Iosup, A., Dumitrescu, C., Epema, D. H. J., Li, H. and Wolters, L., “How are Real Grids Used? The Analysis of Four Grid Traces and Its Implications,” Proc. of 2006 IEEE/ACM International Conference on Grid Computing, Barcelona, Spain, Sep. 2829, pp. 262 269 (2006). doi: 10.1109/ICGRID.2006.311024
- [3] Information on http://aws.amazon.com/ec2/
- [4] Information on http://www.eucalyptus.com/
- [5] Menasc, D. A. and Casalicchio, E., “A Framework for Resource Allocation in Grid Computing,” Proc. of 2004 International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, Vollendam, The Netherlands, pp. 259267 (2004). doi: 10.1109/MASCOT.2004.1348280
- [6] Tsiakkouri, H. Z. E., Sakellariou, R. and Dikaiakos, M. D., “Scheduling Workflows with Budget Constraints,” Proc. of 2005 CoreGRID Workshop Integrated Research in Grid Computing, Pisa, Italy Gorlatch, Nov. 2830, pp. 347357 (2005). doi: 10.1007/978-0-387-47658-2_14
- [7] Yu, J. and Buyya, R., “A Budget Constrained Scheduling of Workflow Applications on Utility Grids Using Genetic Algorithms,” Proc. of 2006 IEEE International Symposium on High Performance Distributed Computing, Paris, France, Jun. 1923, pp. 1923 (2006). doi: 10.1109/WORKS.2006.5282330
- [8] Xu, M., Cui, L., Wang, H. and Bi, Y., “A Multiple QoS Constrained Scheduling Strategy of Multiple Workflows for Cloud Computing,” Proc. of IEEE Symposium on Parallel and Distributed Processing with Applications, Aug. 912, Chengdu, China, pp. 629 ! "#$$%&' doi: 10.1109/ISPA.2009.95
- [9] Abrishami, S. and Naghibzadeh, M., “Deadline-Constrained Workflow Scheduling in Software as a Service Cloud,” Scientia Iranica, Transactions D: Computer Science and Engineering and Electrical Engineering, pp. 680689 (2012). doi: 10.1016/j.scient.2011.11.047
- [10] Dong, F. and Akl, S. G., “PFAS: A Resource-Performance-Fluctuation-Aware Workflow Scheduling Strategies for Grid Computing,” Proc. of IEEE Symposium on Parallel and Distributed Processing, Mar. 2630, Long Beach, California, pp. 19 (2007). doi: 10.1109/ IPDPS.2007.370328
- [11] Zhao, H. and Sakellariou, R., “Advance Reservation Policies for Workflows,” Proc. of 2007 Workshop on Job Scheduling Strategies for Parallel Processing, Jun. 17, Seattle, WA, USA, pp. 4667 (2007). doi: 10. 1007/978-3-540-71035-6_3
- [12] Wieczorek, M., Siddiqui, M., Villazón, A., Prodan, R. and Fahringer, T., “Applying Advance Reservation to Increase Predictability of Workflow Execution on the Grid,” Proc. of 2006 E-Science and Grid Computing Conference, Dec. 46, Amsterdam, The Netherlands, p. 82 (2006). doi: 10.1109/E-SCIENCE.2006.261166
- [13] Information on http://www.opennebula.org/doku.php
- [14] Deelman, E., Singh, G., Livny, M., Berriman, B. and Good, J., “The Cost of Doing Science on the Cloud: The Montage Example,” Proc. of ACM/IEEE Supercomputing Conference, Nov. 1521, Austin, Texas, USA, pp. 112 (2008). doi: 10.1109/SC.2008.5217932
- [15] Kim, H., Khamra, Y. el, Rodero, I., Jha, S. and Parashar, M., “Autonomic Management of Application Workflows on Hybrid Computing Infrastructure,” Scientific Programming, Vol. 19, No. 2, pp. 7589 (2011).
- [16] Ostermann, S., Prodan, R. and Fahringer, T., Cloud Computing: Computer Communications and Networks, Springer Press, Berlin, pp. 179184 (2010). doi: 10. 1007/978-1-84996-241-4_11
- [17] Bittencourt, L. F., Senna, C. R. and Madeira, E. R. M., “Enabling Execution of Service Workflows in Grid/ Cloud Hybrid Systems,” Proc. of 2010 IEEE Symposium on Network Operations and Management Symposium, Apr. 1923, Osaka, Japan, pp. 343349 (2010). doi: 10.1109/NOMSW.2010.5486553
- [18] Ramakrishnan, L., Koelbel, C., Kee, Y., Wolski, R., Nurmi, D., Gannon, D., Obertelli, G., YarKhan, A., Mandal, A., Huang, T. M., Thyagaraja, K. and Zagorodnov, D., “VGrADS: Enabling E-Science Workflows on Grids and Clouds with Fault Tolerance,” Proc. of 2009 ACM/IEEE Conference on High Performance Computing, Networking, Storage and Analysis, Nov. 1420, Portland, OR, USA, pp. 369376 (2009). doi: 10.1145/1654059.1654107
- [19] Nurmi, D., Brevik, J. and Wolski, R., “QBETS: Queue Bounds Estimation from Time Series,” Proc. of 2007 ACM International Conference on Measurement and Modeling of Computer Systems, Jun. 1216, San Diego, CA, USA, pp. 379380 (2007). doi: 10.1145/125 4882.1254939
- [20] Vecchiola, C., Calheiros, R. N., Karunamoorthy, D. and Buyya, R., “Deadline-Driven Provisioning of Resources for Scientific Applications in Hybrid Clouds with Aneka,” Future Generation Computer Systems, Vol. 28, No. 1, pp. 5865 (2012). doi: 10.1016/j.future. 2011.05.008
- [21] Bittencourt, L. F., Senna, C. R. and Madeira, E. R. M., “HCOC: a Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds,” Journal of Internet Services and Applications, Vol. 2, No. 3, pp. 207227 (2012). doi: 10.1007/s13174-011-0032-0
- [22] Liu, X., Yang, Y., Jiang Y. C. and Chen, J. J., “Preventing Temporal Violations in Scientific Workflows: Where and How,” Transactions on Software Engineering, Vol. 37, No. 6, pp. 805825 (2010). doi: 10. 1109/TSE.2010.99
- [23] Iosup, A., Jan, M., Sonmez, O. O. and Epema, D. H. J., “The Characteristics and the Performance of Groups of Jobs in Grids,” Lecture Notes on Computer Science, Vol. 4641, pp. 382393 (2007). doi: 10.1007/978-3- 540-74466-5_42
- [24] Information on http://aws.amazon.com/ec2/
- [25] Jøsang, A. and Haller, J., “Dirichlet Reputation Systems,” Proc. of 2007 International Conference on Availability, Reliability and Security, Vienna, Austria, Apr. 1013, pp. 112119 (2007). doi: 10.1109/ARES.2007.71
- [26] Wang, X., Ding, L. and Bi, D. W., “Reputation-Enabled Self-Modification for Target Sensing in Wireless Sensor Networks,” IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 1, pp. 171179 (2010). doi: 10.1109/TIM.2009.2022445
- [27] Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C. and Katz, D. S., “Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed System,” Scientific Programming Journal, Vol. 13, No. 3, pp. 219237 (2005).
- [28] Yu, J., Buyya, R. and Tham, C. K., “Cost-Based Scheduling of Scientific Workflow Applications on Utility Grids,” Proc. of 2005 International Conference on E-Science and Grid Computing, July 58, Melbourne, Australia, pp. 140147 (2005). doi: 10.1109/ E-SCIENCE.2005.26
- [29] Yuan, Y. C., Li, X. P., Wang, Q. and Zhu, X., “Deadline Division-Based Heuristic for Cost Optimization in Workflow Scheduling,” Information Science, Vol. 179, No. 15, pp. 25622575 (2009). doi: 10.1016/j. ins.2009.01.035
- [30] Information on http://www.cloudbus.org
- [31] Information on https://www.grid5000.fr/
- [32] Juve, G., Chervenak, A., Deelman, E., et al., “Characterization and Profiling Scientific Workflows,” Future Generation Computation Systems, Vol. 29, No. 3, pp. 682692 (2013). doi: 10.1016/j.future.2012.08.015
- [33] Yeo, C. S. and Buyya, R., “Pricing for Utility-Driven Resource Management and Allocation in Clusters,” International Journal of High Performance Computing Applications, Vol. 21, No. 4, pp. 405418D (2007). doi: 10.1177/1094342007083776