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Abstract

The prime aim of the present study is to develop analytical formulations and solutions for the

free vibration analysis of functionally graded plates (FGPs) using higher order shear deformation

theory (HSDT) without enforcing zero transverse shear stress on the top and bottom surfaces of the

plate. The theoretical model presented herein incorporates the transverse extensibility which accounts

for the transverse effects. The equations of equilibrium and boundary conditions are derived using the

principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique and

solving the eigen value equation. The present results are compared with the solutions of the other

HSDTs available in the literature. It can be concluded that the proposed theory is accurate and efficient

in predicting the vibration behaivour of functionally graded plates.
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1. Introduction

Functionally graded materials (FGMs) are a new

generation of engineered materials in which the material

properties are continually varied through the thickness

direction by mixing two different materials and thus no

distinct internal boundaries exist and failures from inter-

facial stress concentrations developed in conventional

structural components can be avoided. FGMs are widely

used in many structural applications such as mechanics,

civil engineering, optical, electronic, chemical, mecha-

nical, biomedical, energy sources, nuclear, automotive

fields and ship building industries to eliminate stress

concentration and relax residual stresses and enhance

bond strength [1]. Most structures, irrespective of their

use, will be subjected to dynamic loads during their oper-

ational life. Increased use of FGMs in various structural

applications necessitates the development of accurate

theoretical models to predict their response.

The literature on the FGPs is relatively scarce when

compared to isotropic and laminated plates. Because of

FGMs applications in high temperature environments,

most of the studies on the behavior of FGPs focus on the

thermo-mechanical response of FGPs: Reddy and Chin

[2], Reddy [3], Vel and Batra [4,5], Cheng and Batra [6]

and Javaheri and Eslami [7].

In the past, a variety of plate theories have been pro-

posed to study vibration behavior of FGPs. The classical

plate theory (CPT) neglects the transverse shear effects

and provides acceptable results of thin plates only. How-

ever, for moderately thick plates CPT under estimates

deflections and over estimates buckling loads and natu-

ral frequencies. The first-order shear deformation theo-

ries (FSDTs) are based on Reissner [8] and Mindlin [9]

accounts for the transverse shear deformation effect by

means of a linear variation of in-plane displacements and
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stresses through the thickness of the plate, but requires a

correction factor to satisfy the free transverse shear stress

conditions on the top and bottom surfaces of the plate.

Although, the FSDT provides a faithful description of

the mechanics for thin to moderately thick plates, it is not

convenient to use due to difficulty with determination of

the correct value of shear correction factor [10]. In-order

to overcome the limitations of FSDT many HSDTs were

developed that involve higher order terms in Taylors-

series expansion of the displacements in the thickness

coordinate, notable among them are Reddy [3], Zenkour

[11�13], Kant and Co-workers [14�19], Kadkhodayan

[20], Matsunaga [21,22], Xiang [23] and Ferreira et al.

[24]. Sahmani and Ansari [25] investigated the free vi-

bration behavior of FGM micro plates using strain gra-

dient elasticity and higher-order shear deformable plate

theory. They modeled the FGM microplates using simple

power law function and Mori-Tanaka homogenization

technique. Saidi et al. [26,27] presented a new formula-

tion of the Navier equations of motion for solving the

known three-dimensional elastostatics and elastodynamics

problems and an exact analytical solution for free vibra-

tion of thin rectangular FGPs based on classical plate

theory. They also studied the effects of in-plane displace-

ment on the vibration of rectangular FGPs. Maziar and

Iman [28] used the finite element method to study the

vibration behavior of functionally graded plates with

multiple circular and noncircular cutouts. Vibration pro-

blems of FGPs can be found in Batra and Jin [29],

Ferreira et al. [30], Vel and Batra [31] presented the valid

exact solutions for thick and thin plates, and for arbitrary

variation of material properties in the thickness direc-

tion, Reddy and Phan [32], Roque et al. [33], Cheng and

Batra [34], Mallikarjuna and Kant [35], Zhao et al. [36],

Hosseini-Hashemi [37], Pradyumna and Bandyopadhyay

[38], Fares et al. [39], Mohammad Talha and Singh [40],

Hassen et al. [41], Hosseini-Hashemi et al. [42], Putcha

and Reddy [43] and Marur and Kant [44], Liu et al. [45],

Mirtalaie et al. [46], Sina et al. [47] and Fallah et al. [48].

Most of these theories do not account for transverse

shear stress on the top and bottom surfaces of the plate

and transverse extensibility by neglecting the transverse

stress in the z-direction (�z). Neves et al. [49,50] derived

a higher order shear deformation theory (HSDT) for mo-

deling of functionally graded material plates and focused

on the thickness stretching issue on the static, free vibra-

tion, and buckling analysis of FGPs by a meshless tech-

nique. They used the virtual work principle of displace-

ments under Carrera’s Unified Formulation (CUF) to

obtain the governing equations and boundary conditions

[49]. Qian et al. [51] analyzed the static Static deforma-

tions, and free and forced vibrations of a thick rectan-

gular functionally graded elastic plate are analyzed by

using a higher-order shear and normal deformable plate

theory (HOSNDPT) and a meshless local Petrov-Ga-

lerkin (MLPG) method. Hence, Vel and Batra [31] and

Qian et al. [51] are considered as reference to validate

the present results in this paper.

The present paper deals with the analytical formula-

tions and solutions for the vibration analysis of function-

ally graded plates (FGPs) using higher order shear defor-

mation theory (HSDT) without enforcing zero transverse

shear stress on the top and bottom surfaces of the plate.

The theoretical model presented herein incorporates the

transverse extensibility which accounts for the trans-

verse effects. Thus a shear correction factor is not re-

quired. The plate material is graded through the thick-

ness direction. The plate’s governing equations and its

boundary conditions are derived by employing the prin-

ciple of virtual work. Solutions are obtained for FGPs in

closed-form using Navier’s technique and solving the

eigen value equation. The present results are compared

with the solutions of the other HSDTs available in the

literature to verify the accuracy of the proposed theory in

predicting the natural frequencies of FGPs. The effect of

side-to-thickness ratios, aspect ratios and modulus ratios

and volume fraction exponent on the natural frequencies

are studied after establishing the accuracy of the present

results for FGPs.

2. Theoretical Formulation

In formulating the higher-order shear deformation

theory, a rectangular plate of length a, width b and thick-

ness h is consider, that composed of functionally graded

material through the thickness. Figure 1 shows the func-

tionally graded material plate with the rectangular Carte-

sian coordinate system x, y and z. The material proper-

ties are assumed to be varied in the thickness direction

only and the bright and dark areas correspond to ceramic
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and metal particles respectively. On the top surface (z =

+h/2), the plate is composed of entirely ceramic and

graded to the bottom surface (z = -h/2) that composed of

entirely metallic. The reference surface is the middle sur-

face of the plate (z = 0). The functionally graded material

plate properties are assumed to be the function of the

volume fraction of constituent materials. The functional

relationship between the material property and the thick-

ness coordinate is assumed to be

(1)

where P denotes the effective material property, Pt, and

Pb denotes the property on the top and bottom surface of

the plate respectively and n is the material variation

parameter that dictates the material variation profile

through the thickness. The effective material properties

of the plate, including Young’s modulus, E, density �,

and shear modulus, G, vary according to Eq. (1), and

poisons ratio (�) is assumed to be constant.

2.1 Displacement Models

In order to approximate 3D plate problem to a 2D

one, the displacement components u(x, y, z, t), v(x, y, z, t)

and w(x, y, z, t) at any point in the plate are expanded in

terms of the thickness coordinate. The elasticity solution

indicates that the transverse shear stress varies paraboli-

cally through the plate thickness. This requires the use of

a displacement field, in which the in-plane displace-

ments are expanded as cubic functions of the thickness

coordinate. In addition, the transverse normal strain may

vary nonlinearly through the plate thickness. The dis-

placement field which satisfies the above criteria may be

assumed in the form [52]:

(2)

where u0, v0 is the in-plane displacements of a point (x,

y) on the mid plane. wo is the transverse displacement of

a point (x, y) on the mid plane. �x, �y, �z are rotations of

the normal to the mid plane about y and x-axes. u0
*, v0

*,

w0
*, �x

*, �y
*, and �z

* are the corresponding higher order

deformation terms.

By substitution of displacement relations from Eq.

(2) into the strain displacement equations of the classical

theory of elasticity the following relations are obtained:

(3)

2.2 Elastic Stress-Strain Relations

The elastic stress-strain relations depend on which

assumption of �z we consider. If �z � 0, i.e., thickness

stretching is allowed then the 3D model is used. In the

case of functionally graded materials the constitutive

equations can be written as:

(4)

where (�x, �y, �z, �xy, �yz, �xz) are the stresses and (�x, �y,

�z, 	xy, 	yz, 	xz) are the strains with respect to the axes,

Qij’s are the plane stress reduced elastic coefficients in

the plate axes that vary through the plate thickness

given by

(5)
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where Ec is the modulus of Elasticity of the ceramic ma-

terial and Em is the modulus of elasticity of the metal.

2.3 Governing Equations of Motion

The governing equations of motion of present theory

are derived using the Hamilton’s principle can be written

in the analytical form as:

(6)

where 
U is the virtual strain energy, 
V is the virtual

work done by applied forces, and 
K is the virtual ki-

netic energy and is given by:

(7)

(8)

where w w
h h

w
h

z z

� � � � �0

2

0

3

2 4 8
� �

* *
is the trans-

verse displacement of any point on the top surface of

the plate and q is the transverse load applied at the top

surface of the plate.

(9)

Substituting for 
U, 
V and 
K in the virtual work state-

ment in Eq. (6) and integrating through the thickness,

integrating by parts and collecting the coefficients of


uo, 
vo, 
wo, 
�x, 
�y, 
�z, 
uo
*, 
vo

*, 
wo
*, 
�x

*, 
�y
*,


�z
* the following equations of motion are obtained.

(10)

where the in-plane force and moment resultants are de-

fined as:

(11)

(12)

and the transverse force resultants and inertias are gi-

ven by:

(13)

(14)
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(15)

where I1, I2, I3, I4, I5, I6, and I7 are the mass moments of

inertia. The terms involving I2, I3, I4, I5, I6, and I7 are

called rotary inertia terms. The terms can contribute to

higher-order vibration or frequency modes.

The resultants in Equations (11)�(14) can be related

to the total strains in Eq. (4) by the following matrix:

(16)

where N = [Nx Ny Nz Nxy]
t; N* = [N x

* N y

* N z

* N xy

* ]t; M =

[Mx My Mz Mxy]
t; M* = [M x

* M y

* M z

* M xy

* ]t; Q = [Qx Qy Sx

Sy]
t; Q* = [Qx

* Q y

* S x

* S y

* ]t; �0 = [�x0 �y0 �z0 �xy0]
t; � 0

* = [� x0

*

� y0

* � z0

* � xy0

* ]t; K = [Kx Ky Kz Kxy]
t; K* = [Kx

* K y

* 0 Kxy

* ]t;  =

[x y kxz kyz]
t; * = [ x

*  y

* kxz

* k yz

* ]t. The matrices [A],

[B], [D] and [Ds] are the plate stiffness whose ele-

ments can be calculated using Eq. (4), and Eq. (11)�

(14).

3. Analytical Solutions

Rectangular plates are generally classified by re-

ferring to the type of support used. We are here con-

cerned with the analytical solutions of the Eq. (10)�

(16) for simply supported FGPs. Exact solutions of the

partial differential Eq. (10) an arbitrary domain and

for general boundary conditions are difficult. Although,

the Navier-type solutions can be used to validate the

present higher order theory, more general boundary

conditions will require solution strategies involving,

e.g., boundary discontinuous double Fourier series ap-

proach.

Solution functions that completely satisfy the boun-

dary conditions in Equations. (17) are assumed as fol-

lows:

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

(17g)

(17h)

(17i)

(17j)

(17k)

(17l)
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where � =
m

a

�
and � =

n

b

�
and m and n are modes num-

bers, and � is the natural frequency of the system.

Substituting Eq. (17a)�(17l) in to Eq. (10) and col-

lecting the coefficients one obtains

(18)

We may obtain the natural frequencies and vibration

modes for the plate problem, by solving the eigen pro-

blem ([S] � �2[M])X = 0 where X are the modes of vi-

bration associated with the natural frequencies defined

as �.

4. Validation

In this section, a numerical examples are presented

and discussed to validate the accuracy of the present

higher-order shear deformation theory in predicting the

natural frequencies of a simply supported functionally

graded material plate.

Example 1: For numerical results, aluminum (Al)/

zirconia(ZrO2) plate is considered and graded from alu-

minum (as metal) at the bottom to zirconia (as ceramic)

at the top surface of the plate. The material properties

adopted here are

Al: Young’s modulus (Em): 70 GPa, density (�m) =

2702 kg/m3, and Poisson’s ratio (�): 0.3.

ZrO2: Young’s modulus (Ec): 200 GPa, density (�c) =

5700 kg/m3, and Poisson’s ratio (�): 0.3.

Presently computed results for different values of

volume fraction exponent n and side-to-thickness ratos

(a/h) are compared with those of Qian et al. [51] and Vel

and Batra [31] (here considered to be the exact solution)

and presented in Tables 1 and 2. For convenience, natu-

ral frequency � has been nondimensionalized as � =

�
�

h
E

m

m

.
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Table 1. Comparison of thickness mode nondimensional natural frequencies of a simply supported square Al/ZrO2 FG

thick plate with m = 1 and n = 1 and different values of side-to-thickness ratios (a/h)

a/h = 20 a/h = 10 a/h = 5
Thickness

mode Present
Qian et al.

[51]

Exact

[31]
Present

Qian et al.

[51]

Exact

[31]
Present

Qin et al.

[51]

Exact

[31]

1 0.0158 0.0149 0.0153 0.0619 0.0584 0.0596 0.2285 0.2152 0.2192

2 0.1534 0.1457 0.1456 0.3068 0.2913 0.2912 0.6136 0.5820 0.5823

3 0.2592 0.2448 0.2454 0.5179 0.4872 0.4901 1.0310 0.9687 0.9752

4 2.2140 2.0334 2.0598 2.2294 2.0788 2.0750 2.2897 2.1696 2.1346

Table 2. Comparison of thickness mode nondimensional natural frequencies of a simply supported square Al/ZrO2 FG

thick plate with m = 1 and n = 1, and different values of n

n = 2 n = 3 n = 5
Thickness

mode Present
Qin et al.

[51]

Exact

[31]
Present

Qin et al.

[51]

Exact

[31]
Present

Qin et al.

[51]

Exact

[31]

1 0.2264 0.2153 0.2197 0.2271 0.2172 0.2211 0.2281 0.2194 0.2225

2 0.5988 0.5709 0.5711 0.5897 0.5659 0.5660 0.5790 0.5612 0.5610

3 1.0056 0.9494 0.9564 0.9896 0.9414 0.9478 0.9711 0.9346 0.9398

4 2.1394 2.0154 2.0150 2.0433 1.9586 1.9530 1.9574 1.9204 1.9075



The presently computed nondimensionalized natural

frequency of the fourth thickness mode corresponding to

m = n = 1 and for a/h = 20 listed in Table 1 differs from

the exact value by 7.49%; the difference is less for the

lower order thickness modes. For a/h = 5, the difference

between the computed and the analytical frequencies of

the fourth thickness mode with m = n = 1 is 7.26%. This

is due to less polynomial terms in the proposed model.

This difference can be decreased and the exact value may

be approached by increasing the polynomial order.

Table 2 shows the nondimensional natural frequen-

cies of different thickness modes and volume fraction

exponents. From Table 2, it is observed that the dif-

ferenece is increasing with the order thickness modes.

However, the side-to-thickness rato a/h of the plate has a

noticeable influence on the natural frequencies.

Example 2: Table 3 shows the comparison of non-

dimensional natural frequencies of a square plate made

of Al/ZrO2 for various values of volume fraction expo-

nent n and for a side to thickness ratio a/h = 5. The mate-

rial properties presented in Example 1 are used for nu-

merical results. Presently computed results for different

values of volume fraction exponent n are compared with

those of Neves et al. [49,50].

The results presented in Tables 1, 2 and 3 are in good

agreement with those of Qian et al. [51] and Vel and

Batra [31] and Neves et al. [49,50] respectively and

should serve as bench mark results for future comparions.

4.1 Properties of FGPs

Aluminium (Al) Young’s modulus (Em): 70 GPa,

density (�m) = 2702 kg/m3, and Poisson’s ratio (�): 0.3.

Alumina (Al2O3) Young’s modulus (Ec): 380 GPa,

density (�c) = 3800 kg/m3, and Poisson’s ratio (�): 0.3.

After establishing the accuracy of the present results

for FGPs, the effect of side-to-thickness ratio (a/h), as-

pect ratio (a/b) and modulus ratio (Em/Ec) on nondimen-

sional natural frequency is studied for the above material

properties.

Figures 2�4 show the variation of the nondimen-

sional natural frequency for various power law expo-

nents “n” and with different side-to-thickness ratios (a/

h), aspect ratios (a/b) and modulus ratios (Em/Ec) respec-

tively according to present higher-order shear deforma-

tion theory. From Figure 2 it is clear that the bending-

stretching coupling and transverse shear deformation

effect is decreasing frequencies is felt for a/h � 10 for

simply supported boundary conditions. The effect of

shear deformation decreases with the increasing values

of a/h and decreasing values of volume fraction expo-

nent. In Figure 3, it is observed that, the effect of cou-

pling is to decrease the natural frequencies for lower

values of aspect ratio. The coupling is maximum for

metals and minimum for ceramics. Finally, Figure 4 de-

picts the variation of fundamental frequency for different

modulus ratios and volume fraction exponents. It can be

seen that, the effect of coupling is significant for all
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Table 3. Fundamental frequency of square FG plate (Al/ZrO2) with a/h = 5 ( m

m

h
E

�
� � � )

Power law index (n)

a/h = 5 source 0 0.5 1 2 3 5 10

Ref. [49] 0.2193 0.2198 0.2212 0.2225

Ref. [48] 0.247 0.2228 0.2193 0.2200 0.2215 0.2230 0.2229

Present 0.247 0.2340 0.2285 0.2264 0.2271 0.2281 0.2272

Figure 2. Effect of side-to-thickness ratios on the nondimen-

sional natural frequency (� �
�

�
a

h E
c

c

2

) of an

FGM plate for different values of volume fraction
exponents (n).



modulus ratios and volume fraction exponents.

5. Conclusions

Analytical formulations and solutions for vibration

analysis of functionally graded material plates is deve-

loped using a higher-order shear deformation theory

considering the �z which account for transverse exten-

sibility and without enforcing zero shear on the top and

bottom of the FGPs. Equations of motion are derived

from the Hamilton’s principle. Closed form solutions are

obtained for simply supported plates using Naviers me-

thod and solving the eigen value problem. The accuracy

and efficiency of the present theory have been demon-

strated in the vibration behavior of FGPs. The results are

compared with the other higher order shear deformation

theory. The present results are in good agreement with

those of Qian et al. [51] and Vel and Batra [31] and

Neves et al. [49,50] and should serve as bench mark re-

sults for future comparisons. In conclusion, it can be said

that the proposed theory is accurate and simple in an-

alyzing the vibration behavior of FGPs.
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