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Abstract

The fully developed MHD mixed convection flow in a vertical channel, partially filled with

clear fluid and partially filled with a fluid-saturated porous medium, is investigated by taking into

account viscous and Ohmic dissipations. The bounding impermeable walls of the channel are

maintained at different constant temperatures. The isothermal-isoflux and isoflux-isothermal

temperature conditions on the walls have also been considered. The flow in the porous medium is

modeled by the Brinkman equation and the Boussinesq approximation holds. The velocity and

temperature distributions in the composite channel are obtained numerically by shooting technique

with fourth order Runge-Kutta method and analytically by perturbation series method. These results

have been depicted graphically, compared and discussed.
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1. Introduction

The study of viscous fluid flow through and across

porous media in the presence of a magnetic field, has be-

come increasingly, for many researchers, an attractive

field for its widespread engineering applications. It has

been the important subject of many recent research pa-

pers, for example see Raptis et al. [1], Chamkha [2],

Geindreau and Auriault [3], Chauahn and Jain [4], Prasad

and Reddy [5], Chauhan and Rastogi [6], Chauhan and

Agrawal [7], Pal and Mondal [8], and Pal and Talukdar

[9].

Interest in the study of mixed convection flow in

porous and non-porous vertical channels, is motivated

by the importance of it in a wide range of engineering ap-

plications, such as in many situations like moisture mi-

gration through air which is contained in fibrous in-

sulations, cooling of electronic instruments and devices,

electrochemical processes, and in solar energy collec-

tors. Tao [10] investigated the fully developed mixed

convection with uniform wall temperature in a vertical

channel. Several researchers devoted their interest to

study free and forced convection in vertical channels

with symmetric/asymmetric heating or prescribed uni-

form heat fluxes on the channel walls, such as, Aung et

al. [11], Burch et al. [12], Aung and Worku [13�15].

These authors examined the laminar convection flow in

the entrance or the fully developed region in the channel

neglecting the effect of viscous dissipation. They also

studied the flow reversal in the channel for various com-

binations of thermal boundary conditions. Barletta [16,

17] and Zanchini [18] presented analyses on mixed con-

vection in the fully developed region of a vertical chan-

nel by considering the effects of viscous dissipation.

These authors have taken the thermal boundary condi-

tions as uniform equal/different temperatures on the

walls, or uniform temperature on one wall and uniform

heat flux on the other wall, or uniform heat fluxes on the

both walls. In these papers, solutions are obtained by

means of a perturbation series method. Barletta [16] and
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Zanchini [18] expressed the solution of governing equa-

tions as a power series in a non-dimensional parameter

which is proportional to Br (Brinkman number). This

number is a measure of the viscous heating. However,

Barletta [17] expressed solution as a power series in a

parameter which is the ratio of Gr (Grashof number) and

Re (Reynolds number). In fact, he has taken the forced

convection flow with viscous dissipation as the base heat

transfer process and buoyancy effect is evaluated by the

above mentioned power series. Barletta [19] also exam-

ined the mixed convection flow in vertical channel with

isothermal-isoflux boundary conditions, taking into ac-

count the viscous heating effect. Umavathi and Mala-

shetty [20] examined the mixed convection MHD flow

in a vertical channel in the presence of viscous and

Ohmic heating. They obtained the temperature and ve-

locity fields by employing perturbation series method

and compared the results with the solution obtained nu-

merically by a finite difference scheme. Viscous and

Ohmic dissipations have been discussed by Babaelahi et

al. [21] in viscoelastic MHD boundary layer flow. The

steady mixed convection in a homogeneous porous layer

which is bounded by two impermeable vertical plates is

studied numerically with finite wall heat source by Lai et

al. [22]. Porous medium is modeled by Darcy’s equation

with the Boussinesq approximation, while in energy

equation viscous dissipation term is dropped. The mixed

convection in a vertical channel filled by a porous me-

dium is studied by Ingham et al. [23] with viscous heat-

ing effect. Umavathi et al. [24,25] examined numerically

and analytically, mixed convection in a vertical channel

filled with a porous medium using Brinkman-Forchheimer

model. The fully developed mixed convection flow is in-

vestigated by Barletta et al. [26] in a vertical channel

filled by a porous material, using by Darcy law with

Boussinesq approximation. The viscous heating effect is

also taken into account, and the mechanical/thermal cha-

racteristics of the flow are investigated numerically and

analytically. Weidman and Medina [27] investigated the

porous medium convection between two vertical walls

where flow in the porous medium is modeled by the

Brinkman equation.

In thermal natural convection in a porous medium

the fluid flow is driven due to buoyancy forces. These

forces result from density variations because of tempera-

ture gradients in the fluid. For such flows, in the fluid-

saturated porous medium, heat is transported by both dif-

fusion and convection, however viscous dissipation ef-

fect normally is negligible in these flows. But imposing

forced convection viscous heating may becomes signifi-

cant in altering these flow and temperature field. Prac-

tical applications such as electronic cooling, packed bed

thermal storage, building insulation, heat transfer from

hair covered skin, solidification of concentrated alloys,

and packed bed catalytic and nuclear reactors motivate

these studies. Many of above mentioned systems are

complicated and involve coupled flow and heat transfer

processes, and in channels the convection heat transfer is

modified by the use of porous layers. Several researchers

investigated mixed convection in vertical channels par-

tially filled with a porous medium, for example Chang

and Chang [28], Al-Nimr and Haddad [29], and Al-Nimr

and Khadrawi [30].

The aim of this investigation is to study the fully

developed mixed convection in a vertical channel par-

tially filled by a porous medium in the presence of a

magnetic field and by taking into account the viscous

and Ohmic heating effects. Flow in the porous medium is

modeled by the Brinkman equation modified for the

magnetohydrodynamics. Velocity and temperature fields

are obtained by means of perturbation series method.

Keeping the ratio of the Grashof number and the Rey-

nolds number fixed, the solution is expressed as a power

series in a non-dimensional parameter proportional to

the Brinkman number. Numerical solution is also ob-

tained by shooting technique with fourth-order Runge-

Kutta method.

2. Formulation of the Problem

2.1 Asymmetric Heating

We consider steady, laminar, electrically conducting

viscous fluid flow in a vertical channel of width ‘h’, par-

tially filled with a porous medium of thickness ‘a’, in the

presence of a magnetic field of strength B0 applied in the

normal direction across the channel. Cartesian coordi-

nate system is taken such that the X-axis is parallel, but in

the opposite direction to the gravitational field, Y-axis is

in transverse direction and the origin is such that the

channel impermeable walls are at Y = 0 and Y = h. These

channel walls are kept at constant temperatures T1 and T2

respectively with T2 > T1. The hydromagnetic fully de-

veloped flow in the channel is assumed, so the only non-

vanishing component of the velocity field is in the X
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direction (longitudinal component). Both velocity and

temperature of the fluid depend on Y only. The longi-

tudinal pressure gradient, ��P/�X = A, is constant and

�P/�Y = 0, where P = p + �0gX, which is the hydro-

magnetic pressure. �0 is the fluid density at the tempera-

ture T0, which is reference temperature of the Boussinesq

approximation and following Barletta and Zanchini [31]

it is taken as T T T0 1 2

1

2
� �( ). The fluid density � is taken

to depend on temperature T by the equation of state:

(1)

The field, for velocity and temperature, is divided

into two regions. Region-I is porous region (0 � Y � a),

and Region-II is clear fluid region (a � Y � h). LetU , T

and u, t denote dimensional velocity components in X-

direction and temperatures, in the region-I and region-II

respectively. A schematic diagram of the problem is

shown in Figure 1.

The Brinkman equation modified for magnetohy-

drodynamics is taken to govern the flow in porous me-

dium (region-I) and in the thermal energy equation for a

porous medium the viscous dissipation term is taken fol-

lowing Al-Hadhrami et al. [32]. Thus the governing

equations for the porous region (I) in the vertical paral-

lel-plate channel are given by

(2)

(3)

The governing momentum and energy equations for the

clear fluid region (II) in the vertical parallel-plate chan-

nel, following Umavathi and Malashetty [20] are given by

(4)

(5)

where g is the acceleration due to gravity, � is the thermal

expansion coefficient, � 	 	1 � / is the viscosity ratio, 	

is the effective viscosity in porous medium, 	 is the clear

fluid viscosity, 
 = 	/�0 is the kinematic viscosity, �e is

the electrical conductivity, K is the permeability of

porous medium, � = k/�0Cp is the thermal diffusivity,

� 2 � k k/ is the thermal conductivity ratio, k is the ef-

fective thermal conductivity in fluid-saturated porous

medium, k is the thermal conductivity of the clear fluid,

Cp is the specific heat at constant pressure, p is the pres-

sure and P = p + �0gX is the modified pressure.

The boundary conditions are given by

(6)

3. Method of Solution

For the solution of the velocity field, T is eliminated

from equation (2), using energy balance equation (3), to

obtain

(7)
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Similarly, equations (4) and (5) give

(8)

Now, we introduce the following non-dimensional qu-

antities:

(9)

where, the reference velocity U* is given by U* = Ah2/

48	.

Using above non-dimensional quantities, the equa-

tions (7) and (8) are reduced to

(10)

(11)

where, Gr
g T T h

�
��




( )2 1

3

2
is the Grashof number; Re =

U h*



, the Reynolds number; Br

U

T T Cp

�
�




�

*

( )

2

2 1

, the

Brinkman number; M B h e� 0

�

	
, the Hartmann num-

ber; and � �
h

K
, the permeability parameter.

From equations (2) and (4), using the non-dimen-

sional quantities (9), we obtain

(12)

(13)

where (Gr/Re) is the mixed convection parameter.

Using the non-dimensional quantities (9), the boun-

dary conditions (6) on U, u, T, t and those induced by the

equations (2), (4), (12) and (13) are given by

(14)

where, a
a

h
� .

The present problem can be solved analytically for

the cases of either negligible viscous dissipation ( = 0)

or negligible buoyancy forces (Gr/Re = 0). But, in ge-

neral, the system (2�6) or (10�11, 14), is a nonlinear

boundary value problem and does not possess an exact

solution. Therefore, the system (10�11, 14) is solved for

small values of  (< 1) by perturbation series method and

for  > 1, the boundary value problem (2�6) is solved,

following Conte and Boor [33] numerically by using

double shooting technique with the fourth-order Runge-

Kutta method.

3.1 Perturbation Method

Let us assume the perturbation expansions for a

fixed value of (Gr/Re) � 0,

(15)

(16)

where perturbation parameter  = Br (Gr/Re) < 1.

Substituting (15) and (16) in the equations (10), (11)

and the boundary conditions (14), and comparing the co-

efficients of 0, 1, … on both sides in the resulting equa-

tions, we obtain the sets of ordinary differential equa-

tions for the zeroth order solution, first order solution,

etc. On solving these sets of equations under the corre-

sponding boundary conditions, we obtain the solution,

neglecting higher order terms n (n � 2), as

(17)
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(18)

where,

M M* [( ) / ]� �2 2

1

1

2� � , and constants of integration

C1, C2, …., C16 are obtained by the corresponding

boundary conditions. Here, F1, F2, …. F18 are also con-

stants in terms of C1, C2,…., C8 and these constants are

not reported for the sake of brevity.

By using (12) and (13) the dimensionless tempera-

ture field is obtained as

(19)

(20)

The Nusselt number at left wall (Y = 0) is given by

(21)

The Nusselt number at right wall (Y = h) is given by

(22)

3.2 Particular Cases

(i) when �� 0, �1 = �2 = 1, the result is in agreement

with that obtained by Umavathi and Malashetty [26].

(ii) When  = 0, � = 0, �1 = �2 = 1 and the results are in

agreement with Aung and Worku [14].

4. Mixed Convection Problem with

Isothermal-Isoflux Walls

The boundary conditions for this case are given by

(23)

We introduce the following additional non-dimensional

quantities for this case,

(24)

Using the non-dimensional quantities in the go-

verning equations and above conditions and solving in a

similar manner as explained in the isothermal-isother-

mal case, we obtain the solution for the velocity and

temperature fields and are not reported here for the sake

of brevity.

5. Mixed Convection Problem with

Isoflux-Isothermal Walls

The boundary conditions for this case are given by

(25)

We introduce the following additional non-dimensional

quantities for this case,

(26)

Using the non-dimensional quantities in the go-

verning equations and above conditions and solving in a

similar manner as explained in the isothermal-isother-

mal case, we obtain the solution for the velocity and

temperature fields and are not reported here for the sake

of brevity.
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6. Numerical Method

In many practical applications, it is found that the

values of buoyancy force are usually large and in such

cases the perturbation series method is not suitable for

the computation of results. However, the analytical solu-

tion obtained by this method are useful in some labora-

tory situations for small values of Grashof number, and

also in choosing initial guesses in numerical techniques,

such as in shooting method, etc. The system of equations

(2�6), is a non-linear boundary value problem. In fact,

the governing momentum and energy equations (2�5)

are coupled non-linear differential equations. These equ-

ations after making in dimensionless form are solved by

using double shooting technique (Conte and Boor [33])

along with Runge-Kutta fourth order method, subject to

the corresponding non-dimensional boundary conditions.

First of all, these higher order non-linear coupled dif-

ferential equations are decomposed into system of first

order linear differential equations. The shooting method

involves choosing initial guesses for the concerned de-

rivatives, in such a manner that end boundary conditions

are satisfied within a prescribed numerical tolerance

value. In this study, it is chosen as 10-6 which is suitable

for computational purposes. With the help of shooting

technique as explained by Conte and Boor [33] U �(0) and

T �(0) are approximated. Hence the system is reduced to

an initial value problem, which is solved using Runge-

Kutta fourth order method. While computing the values

of U �(0) and T �(0), care has been taken to shoot in steps

and the obtained shoots are improved in stages. While

solving the system of equations the step size is kept

0.005. Thus numerical solutions are obtained for several

values of the pertinent parameters M, �1, �2, Gr/Re, , �

and plotted in graphs and tabulated.

7. Discussion

This study discusses the fully developed laminar

MHD mixed convection in a vertical channel where a

porous layer is attached to the left wall

The flow phenomenon encountered in the channel is

a result of interplay of the driving pressure gradient, Lo-

rentz force and buoyancy force on the one hand, and the

non-linear effects of heat generation due to viscous and

Ohmic dissipations on the other hand. For asymmetric

heating the velocity and temperature distributions de-

pend on perturbation parameter . When Gr/Re is posi-

tive there is a buoyancy force assisted flow which is in

upward direction, on the other hand when Gr/Re > 0

there is a buoyancy opposed flow (downward). Although

the sign of the perturbation parameter  and that of the

mixed convection parameter Gr/Re are constrained to be

same, their absolute values, however, are independent

(Barletta [16]).

The effects of the parameters , Gr/Re, �, �1, and M

on the velocity distribution are shown in Figure 2 it is

seen that the numerical and analytical results are in very

good agreement for the small values of the perturbation

parameter . It is observed that the velocity increases

with the increase in the perturbation parameter  for

positive Gr/Re in both regions (porous and clear fluid),

because generation of energy by dissipation forces rise

the fluid temperature causing an increase in the buoy-

ancy force, which in turn increases the flow in upward

direction. This flow in the upward direction is enhanced

in the channel by increasing the permeability K of the

porous layer (i.e. by decreasing the value of the para-

meter �). It is due to the fact that the Darcian resistance

to flow through porous medium is inversely proportional

to the permeability K of the porous material, hence a

higher K value will generate a lesser Darcian resistance

to the flow and the flow is therefore accelerated. How-

ever, increase in the values of the viscosities ratio �1(=

	 	/ ) or the Hartmann number M, reduces flow in the

channel. It is known that when Hartmann number in-

creases, it will also increase the Lorentz force which op-

poses the flow, therefore in the channel flow is deceler-

ated with the rise in M values.

For higher values of the perturbation ( > 1) and

mixed convection parameter (Gr/Re > 0), the velocity

distribution obtained by the numerical method is plot-

ted in Figure 3. Two sets of velocity profiles for  = 0

and  = 2 are depicted for various values of the mixed

convection parameter Gr/Re. It is observed from this

figure that for large values of Gr/Re a flow reversal oc-

curs, in the vertical channel with asymmetric heating. It

is seen that the flow reversal takes place when the value

of the mixed convection parameter Gr/Re surpasses a

critical value. Positive value of this parameter causes an

increase in the velocity near the right wall (hot wall)

and hence a decrease in the velocity is attained near the

left wall (cold wall). It is noticed that flow reversal

shown in this figure always occurs near the left wall
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(cold) due to the effect of low temperature distribution

in this region. It is also noticed that the maximum value

of the velocity near the right wall is seen to be greater

than the numerical value of the minimum velocity near

the left wall for various values of  and Gr/Re. Further

flow reversal increases with the increase in the values

of the parameter Gr/Re that is mixed convection para-

meter will make the flow reversal wider and deeper. This

fact has been reported experimentally by Gau et al. [34]

also. However, the parameter � tends to reduce the flow

reversal that is the flow reversal decreases with the in-

crease in viscous in viscous dissipation. It is also re-

ported by Barletta [16].

Figure 4, shows the plots of temperature field t ver-

sus y for various values of the parameters , �, �1, M, and

Gr/Re for the case of asymmetric heating of the walls.

The comparison of analytical and numerical results are

also shown and it is found that then agreement for small

. It is observed that when  = 0 (negligible viscous dissi-

pation) the temperature profile in the porous region as

well as in the clear fluid region, is a straight line since the

heat transfer in this case will be through conduction only.

However, the convection regime dominates for  � 0 and

the Figure 4, reveals that the temperature in the channel

increases with the rise of the value of  due to viscous

heating. Further temperature enhances in the channel by

the permeability K of the porous medium (or by decreas-

ing �) whereas it is suppressed by the parameters �1, M,

and Gr/Re. For higher values of Gr/Re obtained numeri-

cally and also plotted in this figure.

Figure 5 illustrates the effects of the various para-

meters on temperature with isothermal-isoflux wall con-

ditions. It is found that the temperature at the wall with

constant heat flux increases as the permeability para-

meter � or  increases, however, the other parameters

such as �1, M, Gr/Re have reverse effect. The tempera-

ture profiles with isoflux-isothermal wall conditions and

the observed results are similar to that for the isother-

mal-isoflux wall conditions and the corresponding fig-

ures are not reported here.

Figure 6 displays the rate of heat transfer for isother-

mal-isothermal, and isoflux-isothermal wall tempera-

tures. The Nusselt numbers (Nu0 and Nu1) have been

computed at both walls, for various values of the perti-

nent parameters. It is of practical interest to know the

amount of rate of heat transfer between the channel walls

and the fluid. For the case of isothermal-isothermal wall

conditions, the figure shows that the rate of heat transfer

Nu0 at the left wall of the channel, increases with the rise

of the parameter . The rate of heat transfer is further

enhanced at the left wall when the permeability K of the

porous medium is increased. Whereas reverse effect is

observed with parameters M, �1 and Gr/Re. For the case

of isothermal-isothermal wall conditions, the rate of heat

transfer, Nu1, at the right wall decreases as  increases

and becomes zero at certain value of , then changes
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sign. This sign change of Nu1 is due to the change of di-

rection of heat flow at the right wall when viscous heat-

ing is sufficiently relevant. This critical value of  is fur-

ther increased by M or �1 or Gr/Re or �. But for the case

of isoflux-isothermal wall conditions, it is found that the

absolute value of the rate of heat transfer Nu1 at the right

wall increases by increasing  or K and decreases by M or

�1 or Gr/Re.

Table 1 depicts the values of Nusselt numbers at the

left and right wall for higher values Gr/Re and . These

results are obtained numerically Nusselt numbers are

also obtained numerically for the no-porous and no-

magnetic field case and the results are in excellent agree-

ment with that of Barletta [16]. It also validates our nu-

merical code.

8. Conclusion

The analytical and numerical results are obtained for ve-

locity distribution, temperature distribution, Nusselt num-

bers and are in very good agreement for small values of .

The viscous friction tends to increase the buoyancy
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Re = 1, �1 = 1.25, �2 = 1.5, M = 2.

Figure 6. Nusselt number versus  for �2 = 1.5 and Gr/Re = 1.



force which in turn increases the velocity in the channel.

Velocity further increases by increasing the permeability

K of the porous layer attached the left wall, while, it de-

creases with the increase in �1 or M.

Temperature in the channel increases by increasing

the value of  or the permeability K, while it decreases by

�1, M, and Gr/Re.
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