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Abstract

Unsteady MHD Couette Flow of a viscous incompressible electrically conducting fluid, in the

presence of a transverse magnetic field, between two parallel porous plates is studied. The fluid flow

within the channel is induced due to the impulsive and uniformly accelerated motion of the lower plate

of the channel. The magnetic lines of force are assumed to be fixed relative to the moving plate.

Laplace transform technique is applied to obtain the solution for the velocity field. The expression for

the non-dimensional shear stress at the lower plate is also derived. The asymptotic solution valid for

large time t is obtained to gain some physical insight into the flow pattern. The numerical results for the

velocity is depicted graphically for various values of magnetic parameter M 2, suction/injection

parameter S and time t whereas numerical values of the shear stress at the lower plate are presented in

tabular form for different values of M 2, S and t.
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1. Introduction

The governing equations for the flow of viscous in-

compressible electrically conducting fluid in the pre-

sence of magnetic field are, in general, non-linear and,

therefore, simplified models are considered in literature

with a view to study some specific aspects of the fluid

flow features. Of these models, the one corresponding to

the MHD Couette flow is known to lead to the equations

for which analytical solution can be obtained [1,2].

Hayat et al. [3] discussed three unidirectional non-linear

flows (Couette, Poiseuille and generalized Couette flows)

of an MHD Oldroyd 8-constant fluid. The study of un-

steady MHD Couette flow is of considerable importance

from practical point of view because fluid transients

may be expected in MHD pumps, MHD generators, ac-

celerators, flow meters and nuclear reactors. Keeping in

view this fact, Katagiri [4] investigated MHD Couette

flow of a viscous incompressible electrically conducting

fluid in the presence of a uniform transverse magnetic

field when the fluid flow is induced due to the impul-

sive motion of one of the plates. Muhuri [5] studied this

problem in a porous channel when the fluid flow is in-

duced due to the accelerated motion of one of the plates.

Katagiri [4] and Muhuri [5] presented their analysis by

considering that the magnetic lines of force are fixed re-

lative to the fluid. Singh and Kumar [6] considered the

problem studied by Katagiri [4] and Muhuri [5] in a

non-porous channel when the magnetic lines of force are

fixed relative to the moving plate. Khan et al. [7] investi-

gated MHD flow of a generalized Oldroyd-B fluid in a

porous space taking Hall current into account whereas

Khan et al. [8] also considered MHD transient flows of

an Oldroyd-B fluid in a channel of rectangular cross-

section in a porous medium. Hayat et al. [9] studied the

influence of Hall current and heat transfer on the steady

MHD flows of a generalized Burgers’ fluid between two

eccentric rotating infinite disks of different tempera-

tures. In this case the fluid flow is induced due to a pull

with constant velocities of the disks. Khan et al. [10]
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considered the effects of variable suction and heat trans-

fer on the oscillatory magnetohydrodynamic flow of a

non-Newtonian fluid through a porous medium with slip

at the wall. Khan et al. [11] obtained exact solutions of

accelerated flows for a Burgers’ fluid induced by the ac-

celerating plate by considering two cases of interest viz.

(i) constantly accelerating flow and (ii) variable acceler-

ating flow whereas Khan et al. [12] also studied some ac-

celerated flows for generalized Oldroyd-B fluid. They

obtained exact solutions for the flows induced due to

constantly accelerating plate and variable accelerating

plate by means of discrete Laplace transform technique.

Khan et al. [13] also presented an analysis of transient

oscillatory and constantly accelerated magnetohydro-

dynamic flow of an Oldroyd-B fluid in a porous medium.

The study of MHD flow in a porous channel may find

applications in petroleum and mineral industries, poly-

mer technology, designing of cooling systems with li-

quid metals, geothermal reservoirs, underground energy

transports, MHD generators, pumps, flow meters, accel-

erators and in purification of crude oil etc. Taking into

account this fact Muhuri [5], Reddy and Bathaiah [14],

Prasad Rao et al. [15], Abbas et al. [16] and Hayat et al.

[17,18] investigated MHD flow within a parallel plate

channel with porous boundaries under different conditions.

The aim of the present paper is to study unsteady

MHD Couette flow problem, considered by Singh and

Kumar [6] when the fluid flow is confined to porous

boundaries. Two cases of interest are considered viz

(i) impulsive movement of the lower plate and (ii) uni-

formly accelerated movement of the lower plate. Solu-

tion in both the cases is obtained with the help of Laplace

transform technique. The expressions for the shear stress

at the moving plate is also derived. Asymptotic solution

for large value of time t is obtained to gain some physical

insight into the flow pattern. It is found for large t in both

the cases, that the fluid flow is in quasi-steady state. The

steady state flow is confined to the modified Hartmann

boundary layer of thickness O(1/(� + S/2)) and can be

viewed as classical Hartmann boundary layer modified

by suction/injection. It may be mentioned here that the

fluid motion attains final steady state quicker in the case

of impulsive movement than in the case of an accelerated

movement of the plate of the channel. The numerical re-

sults for the velocity field, computed with the help of

MATLAB software from the analytical solution, is de-

picted graphically versus y for various values of mag-

netic parameter M 2, suction/injection parameter S and

time t. It is found that the magnetic field and time have

accelerating influence on the velocity field in both the

cases whereas suction exerts retarding influence and in-

jection has accelerating influence on the fluid velocity.

The numerical values of the non-dimensional shear

stress at the moving plate are computed with the help of

MATLAB software and are presented in tabular form for

various values of M 2, S and t. It is observed that the mag-

netic field, time and injection reduce shear stress at the

moving plate in both the cases while suction increases it

at the moving plate.

2. Formulation of the Problem and Its Solution

Consider the unsteady flow of a viscous incompres-

sible electrically conducting fluid between two parallel

porous plates y� = 0 and y� = h of infinite length, in x� and

z� directions, in the presence of a uniform transverse

magnetic field H0 applied parallel to y� axis (see Figure

1). Initially (i.e. when time t � � 0), fluid and the plates of

the channel are assumed to be at rest. When time t � > 0

the lower plate (y� = 0) starts moving with time de-

pendent velocity U0t �n (U0 being a constant and n a posi-

tive integer) in x� direction while the upper plate (y� = h)

is kept fixed. The fluid suction/injection takes place th-

rough the porous walls of the channel with uniform ve-

locity V0 which is greater than zero for suction and is less

than zero for injection.
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Figure 1. Physical model of the problem.



It is assumed that no applied or polarization voltages

exist (i.e.
�

E � 0,
�

E being electric field). This corresponds

to the case where no energy is being added or extracted

from the fluid by electrical means [19]. Since magnetic

Reynolds number is very small for metallic liquids and

partially ionized fluids so the induced magnetic field

can be neglected in comparison to the applied one [20].

Therefore the fluid velocity
�

q and magnetic field
�

H is

given by

(1)

Under the above assumptions the equations of mo-

tion for viscous incompressible electrically conducting

fluid reduce to

(2)

where �, �, �e and � are, respectively, fluid density,

electrical conductivity, magnetic permeability and ki-

nematic coefficient of viscosity.

The initial and boundary conditions are

(3)

Equation (2) is valid when the magnetic field is fixed

relative to the fluid. On the other hand, when the mag-

netic field is fixed with respect to the moving plate [21],

the equation (2) is replaced by

(4)

Now we have to find the solution of equation (4) subject

to the initial and boundary conditions (3). For this pur-

pose we have considered two cases of interest viz. (i)

impulsive movement of the lower plate (i.e. n = 0) and

(ii) uniformly accelerated movement of the lower plate

(i.e. n = 1).

Case I. Impulsive Movement of the Lower Plate

Setting n = 0 in equation (4) and introducing the

non-dimensional variables

(5)

the equation (4), in non-dimensional form, become

(6)

where S = V0h/� is the suction/injection parameter, M 2

= ��e
2H0

2h2/�� is the square of Hartmann number and

Re = U0h/� is the Reynolds number.

The initial and boundary conditions (3), in non-di-

mensional form, reduce to

(7a)

(7b)

(7c)

Using Laplace transform, the equation (6) with the help

of (7a) reduces to

(8)

where u y p e u y t dt
pt

( , ) ( , )� 	



�
0

; (p > 0), p being Laplace

transform parameter.

The boundary conditions (7b) and (7c) with the help

of Laplace transform become

(9)

The solution of equation (8) subject to the boundary

conditions (9) is given by

(10)

where u u y p Ri e� ( , ) / , � = (M 2 + S 2/4)1/2, a = k + y, b =

1 + k 	 y, c = 1 + 2k 	 y and d = 1 + 2k + y.

Taking inverse Laplace transform of equation (10),

the solution for velocity field is expressed in the follow-

ing form (McLachlan [22])
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(11)

where ui = u(y, t)/Re.

Equation (11) represents the solution for unsteady

MHD Couette flow within porous channel when the

fluid flow is induced due to the impulsive movement of

the lower plate of the channel. It clearly brings out the

contribution due to the initial Couette flow, the final

steady Hartmann boundary layer and the decaying oscil-

lations excited by the interaction of the magnetic field

and initial impulsive motion. In the absence of suction or

injection (S = 0) it agrees with the solution obtained by

Singh and Kumar [6]. Furthermore, in the absence of

magnetic field (M 2 = 0) and suction or injection (S = 0)

the solution (11) reduces to that of Schlichting [23].

When time t is large, using the asymptotic expres-

sion of erfc(x) i.e.

together with erfc(	x) = 2 	 erfc(x), the solution (11)

may be represented in the following form as

(12)

The expression (12) reveals that the velocity field is

in quasi steady state. The steady state flow is confined

within a boundary layer of thickness O(1/(S/2 + �)),

which may be recognized as modified Hartmann bound-

ary layer and can be viewed as classical Hartmann

boundary layer modified by suction/injection. The thick-

ness of this boundary layer decreases with increase in

either M 2 or S or both. The unsteady state flow in the

flow-field damp out effectively in dimensionless time of

order O(1/�2) when the final steady state is developed.

The time of decay is less than the case when there is no

suction/injection of the fluid.

Shear stress at the moving plate

The non-dimensional shear stress at the lower plate

(y = 0) is given by

(13)

where b� = 1 + k and c� = 1 + 2k.

Case II. Uniformly Accelerated Movement of the

Lower Plate

Substituting n = 1 in equation (4) and using (5), the

equation (4), in non-dimensional form, reduces to

(14)

where R = U0h
3/�2 is non-dimensional parameter.

The initial and boundary conditions (3), in non-di-

mensional form, are

(15a)

(15b)

(15c)
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Using Laplace transform, the equation (14) with the

help of (15a) reduces to

(16)

The boundary conditions (15b) and (15c) reduce to

(17)

The solution of equation (16) subject to the bound-

ary conditions (17) is given by

(18)

where u u y p Ra � ( , ) / .

Taking inverse Laplace transform of equation (18),

the solution for velocity field is presented in the follow-

ing form (McLachlan [22])

(19)

where ua = u(y, t) / R.

Equation (19) represents the solution of unsteady

hydromagnetic Couette flow within a porous channel

when the fluid flow is induced due to the uniformly ac-

celerated movement of the lower plate of channel. In the

absence of suction/injection the solution (19) is in agree-

ment with the solution obtained by Singh and Kumar [6].

Further more, in the absence of the magnetic field and

suction/injection the solution (19) reduces to the one

given by Schlichting [23].

When time t is large, the solution (19) in asymptotic

form becomes

(20)

The solution (20) clearly represents the final steady

state flow along with unsteady state flow. The steady

state flow is confined within the modified Hartmann

boundary layer of thickness O(1/(S/2 + �)), which is

similar to that of Case I. The fluid velocity ua increases

with the increase in time t. Thus we may conclude that

the fluid motion attains final steady state quicker in the

case of impulsive movement than in the case of an accel-

erated movement of the plate of the channel.

Shear stress at the moving plate

The non-dimensional shear stress at the lower plate

(y = 0) is given by
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(21)

3. Results and Discussion

To study the effects of magnetic field, time and suc-

tion/injection on the flow-field the numerical results of

the fluid velocity, computed with the help of MATLAB

software from the analytical solution in both the cases

viz. (i) impulsive movement of the lower plate and (ii)

uniformly accelerated movement of the lower plate, is

depicted graphically versus y for various values of M 2, S

and t in Figures 2 to 7. It is evident from Figures 2 to 5

that the velocities ui and ua increase with the increase in

either M 2 or t throughout the channel. Thus we conclude

that the magnetic field and time have accelerating influ-

ence on the fluid flow in both the cases. Figures 6 and 7

reveal that the fluid velocity in both the cases decreases

with the increase in suction parameter S(> 0) and in-

creases with the increase in injection parameter S(< 0).
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Figure 2. Velocity profiles when S = 1 and t = 0.05.

Figure 3. Velocity profiles when S = 1 and M 2 = 2.

Figure 4. Velocity profiles when S = 1 and t = 0.05.

Figure 5. Velocity profiles when S = 1 and M 2 = 2.



Thus we conclude that the suction exerts retarding influ-

ence on the fluid velocity whereas injection has acceler-

ating influence on it.

The numerical values of non-dimensional shear stress

at the lower plate, computed with the help of MATLAB

software, are presented in Tables 1 to 4 for various values

of M 2, S and t. It is found from Tables 1 to 4 that the non-

dimensional shear stress �i and �a at the lower plate de-

crease with the increase in either M 2 or t whereas it in-

crease with the increase in suction parameter S(> 0) and

decrease with the increase in injection parameter S(< 0).

This implies that the magnetic field, time and injection

reduce shear stress at lower plate in both the cases while

suction increases it at the lower plate.
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