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Abstract

Multiple responses must usually be considered when designing or developing complex

products/processes. Therefore, simultaneously optimizing multiple responses is of priority concern for

manufacturers hoping to gain a competitive advantage. Design of experiments (DOE) is extensively

adopted in industry for determining an optimal parameter-setting or enhancing product quality.

However, DOE can only be applied to optimize a single response. Moreover, when using DOE to

identify the most significant factors in optimizing a single response, the optimal parameter setting for

continuous factors can be determined by using the response surface methodology (RSM). The number

of response surfaces increases with an increasing number of responses. Consequently, the trade-off

between numerous response surfaces simultaneously is complex. Restated, determining the optimal

parameter-setting is a complex task when numerous responses must be considered simultaneously.

Thus, this study presents a novel optimization procedure for multiple responses by using data

envelopment analysis (DEA), which can efficiently analyze data with multiple inputs and multiple

outputs, and RSM. By combining DEA and RSM, the proposed procedure optimizes multiple

responses simultaneously, and overcomes the limitations of RSM when dealing with a large number of

responses. An experiment involving an etching process demonstrates the effectiveness of the proposed

procedure.
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1. Introduction

Product/Process design is typically complex due to

varying customer demands and technology advances.

Several responses must generally be considered in com-

plex product/process designs. Therefore, simultaneously

optimizing multiple responses is of priority concern

among manufacturers.

Design of experiments (DOE) is extensively adopted

in industry to improve processes, product design or obtain

an optimal parameter-setting for process parameters. When

utilizing DOE, response surface methodology (RSM) is

frequently employed to obtain the optimal parameter-set-

ting following analysis of variance (ANOVA) for identi-

fying significant factors. Through RSM, an equation (i.e.,

response surface) representing the approximate relation-

ship between a single response and control factors can be

obtained based on experimental data. A contour plot is

used to characterize the response surface graphically and

determine the optimal parameter-setting. When multiple

responses are considered, the optimal parameter-setting

is obtained by observing overlay contour plots.
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Because RSM constructs response surfaces for each

response, the overlay contour plots are complex when

many responses are considered. In this case, determining

the optimal parameter-setting is difficult. A conventional

means of optimizing multiple responses in DOE is to for-

mulate a multi-response problem as a constrained opti-

mization problem [1]. The response surface of a con-

cerned response is selected as the objective function, and

the remaining response surfaces are selected as const-

raint functions. Mathematical programming is then uti-

lized to acquire the problem solution. Another approach

for optimizing multiple responses in DOE is the Der-

ringer-Suich method via a desirability function [2]. A

geometric mean of desirabilities calculated using desir-

ability functions is used to transform several response

variables into a univariate variable. Koksoy [3] utilized

the Derringer-Suich method to optimize dual responses.

Allen and Yu [4] enhanced RSM using novel low-cost

response surface methods (LCRSMs). These LCRSMs

are generated according to the selection of regression

models with a minimum sum of squares error (SSE).

These approaches for optimizing multiple responses

must construct equations for each response. Restated, the

number of equations increases with an increasing num-

ber of response variables. Optimizing numerous equa-

tions simultaneously is difficult. Thus, determining an

optimal parameter-setting for a multi-response problem

is complex when numerous responses must be consi-

dered simultaneously.

This study presents a novel optimization procedure

that combines data envelopment analysis (DEA) with

RSM to optimize multiple responses. Because DEA is an

efficient means of analyzing data with multiple inputs

and multiple outputs, this study analyzes the designed

experimental data with multiple responses by using DEA.

Multiple responses are evaluated via DEA to acquire re-

lative efficiency for each experimental run. RSM is then

used to generate the optimal parameter-setting according

to the relative efficiencies. Consequently, through the

combination of DEAand RSM, multi-responses problem

can be simply modeled in a single equation. Accord-

ingly, difficulties associated with the simultaneous trade-

off between numerous equations can be avoided. There-

fore, the proposed optimization scheme can overcome

the limitations of existing approaches when the number

of responses is large. Finally, an etching experiment un-

dertaken in a semiconductor company located in Hsin-

chu Science-based Industrial Park, Taiwan, demonstrates

the effectiveness of the proposed procedure.

2. Data Envelopment Analysis

Notably, DEA has been widely adopted in recent

years to assess the performance of a group of units.

These measured units are called decision making units

(DMUs). Based on the concept of an efficiency frontier,

Charnes et al. [5] first modeled DEA through mathe-

matical programming. Thus, DEA can measure the rela-

tive efficiency of DMUs with multiple inputs and out-

puts. The DEA model introduced by Charnes et al. [5] is

called the CCR model. The CCR model utilizes a virtual

multiplier to integrate multiple inputs and outputs into a

single index. The virtual multiplier � generated as the

sum of weighted outputs divided by the sum of weighted

inputs � is utilized to represent the efficiency of each

DMU. The CCR model selects the input and output

weights that maximize relative efficiency of each mea-

sured DMU. The relative efficiency of the tth DMU ana-

lyzed by the CCR model is obtained by Eq. (1).

(1)

where Ett is the relative efficiency of the tth DMU, uy is

the yth output weight, vx is the xth input weight, Owy and

Iwx are the yth output and xth input, respectively, for the

wth DMU, and w = 1, …, L, L is the number of measured

DMUs.

A DMU with a unity efficiency score is considered

the best performer among measured DMUs. However,

from experience, many DMUs occasionally have this ef-

ficient status. In this case, cross-evaluation is applied to

rank the best performers. Cross-evaluation was first pro-

posed by Sexton et al. [6]. Doyle and Green [7] extended

cross-evaluation and further developed a cross-efficiency

method to discriminate between efficient DMUs. They

regarded the relative efficiency in the CCR model as a
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self-appraisal measure. Considering input and output

weights of DMUs in the reference set for the CCR model

can generate a peer-appraisal efficiency. Peer-appraisal

efficiency is determined from the cross-efficiency. For

instance, the cross-efficiency of the sth DMU with weights

determined by the tth DMU (i.e., Ets) can be expressed as

(2)

where uty is the weight of the yth output determined by

evaluating the tth DMU, vtx is the weight of the xth input

determined by evaluating the tth DMU, Osy is the value

of the yth output for the sth DMU, and Isx is the value of

the xth input for the sth DMU.

Subsequently, the cross-efficiency value can be ob-

tained using Eq. (3).

(3)

where Itx is the value of the xth input for the tth DMU,

and Oty is the value of the yth output for the tth DMU.

The first constraint in Eq. (3) can avoid the objective

function having a fractional format, and is helpful in

obtaining a solution for the goal programming proce-

dure. The second constraint in Eq. (3) restricts the DEA

model to yield a positive weight, while the third con-

straint ensures that the relative efficiency value does

not exceed 1. The last constraint in Eq. (3) represents

the self-appraisal measure (i.e., Ett in Eq. (1)).

Finally, the peer-appraisal efficiency without self-

appraisal of the sth DMU (i.e., es), which is obtained by

averaging cross-efficiency, can be expressed as

(4)

3. Response Surface Methodology

Response surface methodology is an empirical sta-

tistical approach for modeling problems in which several

variables influence a response of interest. In RSM, an ap-

proximate relation between a single response and mul-

tiple variables is modeled as a polynomial equation ob-

tained through regression analysis. The equation is called

a response surface and is generally represented graphi-

cally on a contour plot for analyzing an optimal solution.

Usually, a low-order polynomial in some regions of vari-

ables is used [8]. Assume that y denotes the response and

xg denotes the variables, g = 1, …, N. When a linear func-

tion of variables can effectively model a response, then

the response surface is a first-order model, as follows.

(5)

where �g is the regression coefficients, g = 1, …, N.

When specifying curvature of a response surface, a

polynomial of a high order is appropriate for the re-

sponse surface. For instance, a second-order model of

the response surface is

(6)

The fitted response surface is an adequate approxima-

tion of the true response function when an appropriate

model is selected. Furthermore, model parameters are

estimated effectively when proper experimental designs

are used to obtain experimental data. Details of experi-

mental designs for fitting response surfaces are found in

Khuri and Cornell [9] and Montgomery [8].

4. Optimization Procedure

This study presents a novel procedure that simulta-

neously optimizes multiple responses for designed ex-

periments. First, an appropriate experimental design is

selected to construct the experiments. Both DEA and

RSM are then applied to analyze experimental data. Fi-

nally, the parameter-setting with the highest efficiency is

selected as the optimal parameter-setting. The proposed

procedure has the following five steps.

Step 1. Design and perform the experiment

Control factors, response variables and quality cha-

racteristics (i.e., larger-the-better (LTB), nominal-the-
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best (NTB) or smaller-the-better (STB)) of response va-

riables are determined according to expert opinions or

screening experiments. An appropriate experimental

design (e.g., a central composite design (CCD), a face-

centered cube design or a computer-generated design) is

then utilized to construct the experiment. After perform-

ing the experiments, associated response values for each

experimental run are recorded. Let yij represent the re-

cord of the jth response under the ith experimental run, i

= 1, …, m, j = 1, …, n.

Step 2. Normalize the experimental data

To mitigate the effects of various measuring units of

responses on relative efficiency analysis in DEA, experi-

mental data are normalized. Response values yij for the

jth response variable are transformed to yij

' using Eq. (7),

j = 1, …, n.

(7)

where y y ij ij

� � �min{ }, j = 1, …, n, when the jth re-

sponse variable belongs to a STB or LTB variable; yj

� =

max{ }y iij � , j = 1, …, n, when the jth response variable

belongs to a STB or LTB variable; yj

�� = min{| yij –

target | �i}, j = 1, …, n, when the jth response variable

belongs to a NTB variable; yj

� � = max{| yij – target | �i},

j = 1, …, n, when the jth response variable belongs to a

NTB variable.

Step 3. Determine the efficiency of each

experimental run using DEA

As DEA can analyze multiple inputs and outputs si-

multaneously, DEA can be utilized to analyze experi-

mental data with multiple inputs and outputs. Addition-

ally, cross-evaluation is utilized to construct the DEA

model for differentiating between efficient experimental

runs. In this study, each experimental run is considered

as a DMU when using DEA. Let � be an extremely small

positive value (i.e., 10�6); � is regarded as the input in

DEA. Notably, yij

' obtained in Step 2 plus � are regarded

as DEA outputs. Equation (8) is then applied to derive

the cross-efficiency of each experimental run. Consequ-

ently, the peer-appraisal efficiency without self-appra-

isal for the measured sth DMU (i.e., es) is acquired, using

Eq. (9). A high es value represents superior performance

among experimental runs. Therefore, es can be considered

an index of quality performance for the parameter-set-

ting used in the measured sth DMU.

(8)

where vi is the input weight determined by evaluating

the ith DMU; uij is the weight of the jth response deter-

mined by the evaluating the ith DMU; Ii is the input

value for the ith DMU; yij

' is the value obtained in Step

2, i = 1, …, m, j = 1, …, n.

(9)

Step 4. Establish the response surface of efficiency

using RSM

The es values and corresponding parameter-settings

are analyzed using RSM to determine the response sur-

face of efficiency. The appropriate polynomial model of

efficiency is determined based on lack-of-fit test results.

When a quadratic model is appropriate, the response sur-

face of efficiency can be expressed as

(10)

where xg represents the control factors designed in Step
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1, g = 1, …, N.

Step 5. Determine the optimal parameter-setting

The optimal parameter-setting can be obtained using

Eq. (11) according to the response surface of efficiency

acquired in Step 4.

(11)

where � is the feasible region.

5. Illustrative Example

An experiment involving an etching process demon-

strates the effectiveness of the proposed optimization

procedure. Experimental data were provided by a semi-

conductor company located in Hsinchu Science-based

Industrial Park, Taiwan.

Etching is an important process in manufacturing se-

miconductors. Specifically, plasma etching is widely ap-

plied in semiconductor manufacturing. Plasma etching

involves using a glow discharge with a solid material to

produce chemically reactive species from relatively inert

molecular gases [10]. Radiation caused by ions, elec-

trons and photons enhances the reaction to form volatile

compounds that are to be removed. Selective etching, re-

action rate and uniformity are three important factors in

the etching process. The desired parameter-setting is to

have highly selective etching, a high reaction rate and

high uniformity in the etching process. Therefore, exper-

imental responses were determined according to these

criteria and are denoted as y1 (LTB), y2 (STB), y3 (STB),

y4 (STB) and y5 (LTB). Both y1 and y3 signify erosion

rate; y2 and y4 are indices of uniformity; y5 is the capa-

bility of selective etching. Figure 1 shows the location

of the Si3N4 layer and oxide layer in the etching process.

Furthermore, five control factors, determined according

to screening experiments, are denoted by x1, x2, x3, x4 and

x5. The current operational setting for control factors is

(x1, x2, x3, x4, x5) = (175, 125, 0, 67, 0).

Face-centered CCD is utilized to construct the ex-

periments and, then, experimental observations are nor-

malized using Eq. (7). Normalized data are then an-

alyzed using DEA via Eqs. (8) and (9). Table 1 lists the

efficiency values after calculation. Additionally, a re-

sponse surface of efficiency is established using RSM.

Based on lack-of-fit test results (by Design-Expert soft-

ware, version 6, Stat-Ease, Minneapolis, USA) (Table 2),

the quadratic model is selected as follows.

es = 0.61 + (4.3 � 10�4) � x1 + (1.9 � 10�3) � x2 - (6.8 � 10�4)

� x3 + (3.4 � 10�3) � x4 + 0.02 � x5 - (7.1 � 10�7) � x1

2

- (1.3 � 10�5) � x2

2 + (2 � 10�5) � x3

2 + (3 � 10�6) � x4

2

- (1.1 � 10�3) � x5

2 + (3.5 � 10�6) � x1 � x2 - (9.2 � 10�6)

Optimization of Multiple Responses Using Data Envelopment Analysis and Response Surface Methodology 201

Figure 1. Etching process.

Table 2. Summary of lack of fit tests

Source S.S. d.f. M.S. F value

Linear 0.32 21 0.02 784.95

2FI 0.15 11 0.01 685.89

Quadratic 0.01 06 0.00 103.43 Suggested

Cubic 0.00 01 0.00 037.17 Aliased

Pure Error 0.00 05 0.00

Table 1. Efficiency score values

Control factors
Run

x1 x2 x3 x4 x5

es

1 400 200 70 20 0 75.81%

2 080 050 70 20 0 81.56%

3 240 125 35 50 8 86.57%

… … … … … … …

30 400 200 0 80 0 73.45%

31 080 200 0 20 0 53.43%

32 080 050 0 80 0 91.40%



� x1 � x3 - (8.2 � 10�8) � x1 � x4 + (2 � 10�5) � x1 � x5

+ (1.3 � 10�5) � x2 � x3 - (2.1 � 10�5) � x2 � x4 + (2.9

� 10�5) � x2 � x5 - (2.5 � 10�8) � x3 � x4 + (8.5 � 10�6)

� x3 � x5 - (1.9 � 10�4) � x4 � x5 (12)

Finally, the optimal parameter-setting for the Si3N4

etching process is obtained using Eq. (11). The optimal

parameter-setting of the proposed procedure is (400,

50.69, 0, 80, 5.26).

To compare further the responses of the proposed

procedure with those of the current operation, response

surfaces for each response are generated to predict re-

sponse values. The conventional RSM is utilized to con-

struct response surfaces for each response based on ori-

ginal experimental observations. The response surfaces

obtained by the conventional RSM are as follows.

y1 = -694.60 + 5.67 � x1 - 11.53 � x2 + 14.99 � x3 + 46.55

� x4 + 34.27 � x5 - 0.01 � x1

2 + 0.04 � x2

2 - 0.08 � x3

2

- 0.52 � x4

2 - 0.03 � x5

2 + 0.03 � x1 � x2 + 0.02 � x1 � x3

+ 0.11 � x1 � x4 - 0.15 � x1 � x5 - 0.09 � x2 � x3 + 0.07

� x2 � x4 - 0.10 � x2 � x5 - 0.10 � x3 � x4 + 0.86 � x3 � x5

- 0.67 � x4 � x5 (13)

y2 = 26.05 - 0.06 � x1 - 0.08 � x2 - 0.03 � x3 - 0.21 � x4

- 0.71 � x5 + (8.7 � 10�5) � x1

2 + (7.3 � 10�4) � x2

2 - (2.7

� 10�4) � x3

2 + (5.1 � 10�4) � x4

2 - (1.4 � 10�3) � x5

2

- (2.7 � 10�4) � x1 � x2 + (5.7 � 10�4) � x1 � x3 + (1.5

� 10�5) � x1 � x4 + (5.8 � 10�4) � x1 � x5 - (5.8 � 10�4)

� x2 � x3 + (4.4 � 10�4) � x2 � x4 + (2.7 � 10�4) � x2 � x5

- (9 � 10�5) � x3 � x4 - (2 � 10�3) � x3 � x5 + 0.01 � x4

� x5x5 (14)

y3 = -278.40 + 10.25 � x1 -13.85 � x2 +11.62 � x3 + 8.49

� x4 - 31.05 � x5 - 0.02 � x1

2 + 0.04 � x2

2 - 0.05 � x3

2

- 0.12 � x4

2 + 7.00 � x5

2 + 0.01 � x1 � x2 + 0.02 � x1 � x3

+ (7.3 � 10-4) � x1 � x4 - 0.21 � x1 � x5 - 0.08 � x2 � x3

+ 0.12 � x2 � x4 - 0.14 � x2 � x5 - 0.15 � x3 � x4 + 0.07

� x3 � x5 + 0.30 � x4 � x5 (15)

y4 = 13.69 - 0.03 � x1 + 0.09 � x2 - 0.12 � x3 - 0.14 � x4

- 0.09 � x5 - (2 � 10�4) � x1 � x2 - (1.1 � 10�7) � x1 � x3

+ (5.2 � 10�4) � x1 � x4 + (4.5 � 10�4) � x1 � x5 + (4.3

� 10�4) � x2 � x3 - (1.1 � 10�4) � x2 � x4 - (1.7 � 10�3)

� x2 � x5 + (2.6 � 10�3) � x3 � x4 + (4.3 � 10�3) � x3 � x5

- (3.6 � 10�3) � x4 � x5 (16)

y5 = 0.81 - 0.02 � x1 + 0.03 � x2 - (3.6 � 10�3) � x3 + 0.04

� x4 + 0.09 � x5 + (4.2 � 10�5) � x1

2 - (4.6 � 10�5) � x2

2

- (1.1 � 10�5) � x3

2 - (3.1 � 10�4) � x4

2 - 0.01 � x5

2 - (5.4

� 10�5) � x1 � x2 - (5.6 � 10�5) � x1 � x3 + (3 � 10�5) � x1

� x4 + (4.7 � 10�4) � x1 � x5 + (1.4 � 10�4) � x2 � x3

- (5.3 � 10�5) � x2 � x4 - (3 � 10�4) � x2 � x5 + (3.6

� 10�4) � x3 � x4 - (2.2 � 10�4) � x3 � x5 - (2.1 � 10�3)

� x4 � x5 (17)

The predicted responses for the parameter-setting

generated by the proposed procedure and current opera-

tions are acquired using Eqs. (13) to (17), respectively.

Table 3 summarizes the prediction results of the pro-

posed procedure and the existing methods (Derringer

and Suich [2], Koksoy [3] and Allen and Yu [4]). Table 4

shows the optimal parameter-setting of these methods.

According to Table 3, the parameter-setting of the pro-

posed procedure yields a better performance for each re-

sponse than that of the current operation. Consequently,

the proposed procedure is an effective means of optimiz-

ing multiple responses simultaneously.

6. Conclusion

This study presents a novel procedure that optimizes

products/processes with multiple responses. Because DEA

is used to simultaneously analyze experimental data with
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Table 3. Comparison of proposed procedure with current operation and existing methods

Response
Quality

characteristic
Current

operation
Proposed
procedure

Derringer and Suich
(1980)

Allen and Yu
(2002)

Koksoy
(2005)

y1 LTB 2349.35 3561.16 3800.05 4121.98 1634.93
y2 STB 0005.56 0 0000.07 000-1.83- 0003.72
y3 STB 1244.51 0954.54 1090.78 1343.10 1821.34
y4 STB 0011.34 0005.61 0006.33 0005.15 0007.04
y5 LTB 0002.47 0002.98 0003.08 0002.84 0000.12



multiple inputs and outputs, the drawback that the num-

ber of response surfaces increases with an increasing

number of responses in RSM can be avoided. Moreover,

by combining DEA and RSM, the proposed procedure

can simultaneously evaluate several responses to acquire

a satisfactory parameter-setting for all responses. When

encountering a complex product/process design with

numerous responses, the proposed procedure avoids dif-

ficulties associated with subjective trade-off settings.

The illustrative example of the etching process at a semi-

conductor company demonstrates the effectiveness of

the proposed procedure. Analytical results indicate that

the parameter-setting obtained using the proposed proce-

dure satisfies the quality requirements of each response.
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Table 4. Optimal parameter-setting of proposed procedure and existing methods

Control factors
Current

operation

Proposed

procedure

Derringer and Suich

(1980)
Allen and Yu (2002) Koksoy (2005)

x1 175 4000 400 400 224.41

x2 125 50.69 71.42 107.870 050.02

x3 000 00 08.48 00.01 034.69

x4 067 80 75.26 80.00 20

x5 000 05.26 5.5 06.04 16


