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Abstract

As wireless networks have been widely deployed for public mobile services, predicting the

location of a mobile user in wireless networks became an interesting and challenging problem. If we

can correctly predict the next cell to which the mobile users are going, the performance of wireless

applications, such as call admission control, QoS and mobility management, can be improved as well.

In this paper, we propose a mobility prediction algorithm based on dividing sensitive ranges. The

division is in accordance with the cell transformation probability. Then different prediction methods

are applied according to the sensitivity of the range to gain high precision. Simulations are conducted

to evaluate the performance of the proposed scheme. As it turns out, the simulation results show that

the proposed scheme can accurately predict the location for mobile users even in the situation of

lacking location history.
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1. Introduction

Wireless networks, including Worldwide Interoper-

ability for Microwave Access (WiMAX) [1], Wireless

Fidelity (WiFi) [2], Wideband Code Division Multiple

Access (WCDMA) [3], High Speed Download Packet

Access/High Speed Upload Packet Access (HSDPA/

HSUPA) [4], and Wireless Sensor Network (WSN) [5�

7], are rapidly being developed to achieve high-speed

data transmission. Since the NGN (Next Generation Net-

work) consists of heterogeneous networks and supports

mobile/ubiquitous computing, developing efficient ge-

neralized mobility management for the NGN has be-

come one of the key issues in the NGN research. In addi-

tion, the mobility management will be a very important

function for wireless networks in future all-IP radio het-

erogeneous networks.

The aim of mobility management is to track where

the mobile subscribers are located, so that calls (or links)

and other mobile services can be delivered to them cor-

rectly. The location update and paging are two essential

operations for mobility management. However, they re-

quire more signaling costs. In GSM (Global System for

Mobile Communications) or UMTS (Universal Mobile

Telecommunications System) network, there are many

base stations, and each base station covers a small geo-

graphical area, called cell, which is a uniquely identified

location area. By integrating the coverage of each base

station, cellular networks can provide a wider radio co-

verage area. In cellular networks, the location update

messages allow a mobile subscriber to be informed when-

ever it moves from one location area to the next cell.

Paging is another process used in the cellular networks

when we are trying to search a mobile subscriber. It

sends polling signals to the neighbor cells closed to the

last reported location of a mobile subscriber. However,
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when the micro-cell technique was applied to the cellular

networks, the frequency of location update will be in-

creased, so that higher location update frequency would

cause more extra overhead in cellular networks. As a re-

sult, if we can precisely predict the next cell where a mo-

bile subscriber will go, things will be different. With pre-

cise mobility prediction techniques, the frequency of lo-

cation update can be reduced drastically.

Vertical handoff is another important mechanism to

achieve continuous seamless transmissions in cellular

networks. In contrast to the horizontal handoff, vertical

handoff considers not only the received signal strength

(RSS) but also the service-class mapping between enter-

ing and leaving networks. However, in comparison to

horizontal handoff, vertical handoff is a more complex

process, which requires lower delay, lower power, and

the occupied bandwidth should be as small as possible.

In addition, vertical handoff needs more complex wire-

less access technologies in terms of signal detection,

channel distribution, and the optimization of radio re-

source management. In order to improve the quality of

service (QoS) in heterogeneous networks, moreover,

handoff delay, channel scanning and resource reserva-

tion should be implemented as well. An excellent discus-

sion on the QoS for wireless networks can be found in [8].

Mobility prediction is very helpful in terms of the

performance improvement in each aspect. If the predic-

tion of the next cell for a mobile subscriber can be carried

out more accurately, on one hand, we can reduce the re-

quired workload, handoff delay [9] and the number of

channels which are needed to scan in handoff. On the

other hand, we can negotiate with the next cell and re-

serve the resources for the mobile subscriber in advance

so as to avoid the QoS from being degraded due to in-

sufficient resources available. Thus mobility prediction

plays a prominent role in wireless networks. In addition,

mobility prediction also plays an important role in flow

control and energy consumption in wireless networks

[10], and can improve the efficiency of multicast proto-

cols in ad hoc networks [11]. Besides, mobility predic-

tion will play a decisive role in developing wireless mul-

timedia applications and integrating various business

activities.

In this paper, we propose the concept of dividing

sensitive ranges in accordance with the probability of

cell transformation, and then provide a mobility predic-

tion algorithm based on dividing sensitive ranges, in

which different algorithms are designed in accordance

with different sensitive ranges. Finally, a comprehensive

simulation is conducted to evaluate the performance of

the proposed scheme. The simulation results show that

the proposed scheme has high accuracy and universality.

The remainder of this paper is organized as follows.

Section 2 describes some of the related works about mo-

bility prediction. Section 3 introduces our mobility pre-

diction algorithm based on dividing sensitive ranges. Si-

mulation and experimental results are given in section 4,

followed by section 5 which concludes this paper.

2. Related Work

In [12], the authors provided a brief description of

several algorithms used for location prediction, which

broadly falls into the following two categories: (1) do-

main-independent algorithms which are derived from

Markov analysis and text compression algorithms, and

can be applied to mobility prediction. (2) domain-spe-

cific algorithms which consider the geometry informa-

tion of user motion as well as the semantics of the sym-

bols in the user’s movement history. In what follows, we

briefly mention other algorithms, and end with some

concluding remarks.

It should be noticed that the use of mobility predic-

tion to improve mobility management makes one pri-

mary assumption, that is, user’s movements follow a pat-

tern and display some regularity, despite actual user mo-

bility patterns may not be well understood. In order to in-

crease the accuracy rate of prediction, some researchers

make a secondary assumption: the next cell crossing is a

logical function of user’s current position, velocity, and

cell geometry. Mobile motion prediction algorithm is

based on the user’s movement history [13], and the

movements consist of regular and random components,

which can be either matched with circle/track patterns or

simulated by the Markov chain model. Prediction is

highly accurate with regular movements but decreases

linearly with increasing random component.

Profile-based next-cell prediction algorithm is based

on the user’s movement history and the classification of

locations [14]. Mobility can be purely random, almost

random, purely deterministic, and mostly deterministic.

The type of location can be office, corridor, or common
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room. It provides advance reservation and adaptation in

resource management. Prediction is highly accurate with

fully predictable movements, 80% accurate for typically

observed movements, and 70% for fully random move-

ments.

Hierarchic position-prediction algorithm is based on

the user’s movement history and instantaneous RSSI

(Received Signal Strength Indication) measurements of

surrounding cells [15]. User’s movement can be mapped

into previous mobility patterns, with matching opera-

tions such as insertion, deletion and changing. Intercel-

lular movements can also be estimated by current loca-

tion, velocity and cell geometry. It sets up and reserves

resources along a mobile’s path, and plans quick hand-

overs between base stations. This method minimizes the

occurrence of location registration and update proce-

dures. Prediction remains reasonably accurate (75%) de-

spite the influence of random movements.

Adaptive user mobility prediction algorithm was de-

rived from a probability distribution of all possible next

moves [16]. If the first predicted cell does not contain a

probability higher than the PCR (Prediction Confidence

Ratio), one or more extra cells will be added to the group

of cells in which resources will be reserved in advance

and services will be pre-configured. This process will

continue until the sum of their probabilities exceeds the

PCR. But the value of PCR is different between different

cells. Hence, it is difficult to obtain a correct PCR from

certain networks, and thus its accuracy is not good

enough.

In the future distance prediction scheme proposed in

[17,18], a node predicts its own future position from its

current position, speed, and direction. Model-based adap-

tive mobility prediction [19] uses the prediction scheme

in [18] but with an enhanced future distance predictor

which adaptively produces the coefficients of a specified

estimator using learning automaton. Mobility prediction

algorithm in [20] is similar with [13]. The major differ-

ence between the two schemes is that the motion predic-

tion architecture is used to predict the mobile subscri-

ber’s next location in high speed environment where mo-

bile subscriber moves with a very high speed. In [21], the

authors propose a linear prediction algorithm, which di-

vides time into multiple prediction windows, and each

window is a prediction unit. They assume that the mobil-

ity behaviors of the nodes will not be modified during

adjacent prediction windows. This algorithm is adapted

in underwater sensor networks.

Mobility prediction algorithm in [22] extrapolates

the future positions according to the current position and

their habits. They suggest a cache having mobile ID (a

unique mobile identifier which includes pin code or

MAC address), period (allows the distinction between a

working day (0) and a public holiday (1)), source cell (in-

dicates the cell from which the mobile came), destination

cell (indicates the cell towards which the mobile is go-

ing), date (indicates the date at the moment the displace-

ment is recorded), and then make prediction based on

these history information in the cache. In fact, this met-

hod is a multiple state Markov model, and is difficult to

be carried out.

Joint mobility prediction (JMP) algorithm [23] with

differential accuracy requirements is applied to target

tracking in wireless sensor network, which depends

heavily on the cooperation between sink node and sensor

node. Mobility prediction in [24] uses the order-2 Mar-

kov chain to capture user’s movement history and carry

out predictions. This is highly suitable for a campus en-

vironment because of its simplicity. However, the accu-

racy is not satisfactory. Mobility prediction algorithm in

[25] uses a vector ([xk, yk, zk, vxk, vyk, vzk]
T) to denote the

node’s state at a time instance, where xk, yk and zk specify

the 3D position of the node, and vxk, vyk, and vzk specify

the velocity components on x, y, and z axes, respectively.

Mobility prediction applies the current location infor-

mation, the projected velocity, and the mobility pattern

parameters to predicting the location at a future time

instance.

3. Mobility Prediction Algorithm Based on

Dividing Sensitive Ranges

In previous works, any location in a cell is treated

equally in mobility prediction algorithms. In fact, such a

setting may result in a low accuracy rate of prediction.

Since the goal of mobility prediction is to predict the

next cell or subnet that the mobile subscriber will enter,

we are much concerned about the locations where the fu-

ture cell may be different from the current one. In fact,

the probability of moving form a cell to the next, called

cell transformation, is different with respect to different

locations in the cell. Hence, it is not reasonable to apply
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the same mobility prediction to different locations. As a

consequence, we propose a mobility prediction algo-

rithm based on dividing sensitive ranges which does not

need the location history. On one hand, our algorithm has

the merit of putting predictive resources to rational use.

On the other hand, the simulation results show that the

accuracy rate achieves up to 100% (best case), and the

average accuracy rate is about 93.4%. Furthermore, our

algorithm can be widely employed by a variety of termi-

nal units in wireless networks.

In what follows, we propose how to divide sensitive

ranges. The probability of cell transformation is defined

as sensitivity. When the probability of cell transforma-

tion is large (resp., small), the sensitivity is high (resp.,

low). If the probability is zero, the sensitivity is the mini-

mum. In order to divide the range in a cell, if the mini-

mum distance between the mobile subscriber and the

border is greater than D, defined as follows, the range is

called the number 1 range.

(1)

where Vmax is the maximum rate of the mobile sub-

scriber; T is the period of mobility prediction, i.e., the

location of the mobile subscriber is predicted every T

seconds. Note that, if Vmax is unknown, it can be re-

placed by the upper limit rate supported by the networks.

According to the calculation of D, it is reasonable to

assume the probability of cell transformation in the num-

ber 1 range to be zero, i.e., the sensitivity is zero. If the

mobile subscriber is located within the number 1 range,

it will still be in the same cell in T seconds. If the mini-

mum distance between the mobile subscriber and the

border is from d to D, in which d is defined as follows,

this range is called the number 2 range.

(2)

where v is the average rate of mobile subscriber. Appar-

ently, compared to the number 1 range, the probability

of cell transformation in the number 2 range is larger,

and the sensitivity in the number 2 range is also higher.

Finally, if the distance between the mobile subscriber

and the border is from zero to d, this range is called the

number 3 range. The probability of cell transformation

considers not only the motion characteristics but also

the location of the mobile subscriber currently. Since

the probability of cell transformation in the number 3

range will be larger than that in the number 2 range, the

sensitivity in number 3 is the highest.

Take a regular hexagonal cell as an example. As il-

lustrated in Figure 1, the area which is filled in black is

the number 1 range and its sensitivity is lowest. The area

which is covered with shadow is the number 2 range and

its sensitivity is higher, as compared to the number 1

range. The number 3 range is filled in white and its sen-

sitivity is the highest of all.

Generally, the complexity of algorithm is propor-

tional to the accuracy. In order to use the predictive re-

sources rationally, different algorithms with different

complexity should be applied to different sensitive ranges.

Therefore, two algorithms with different complexity (av-

erage rate mobility prediction and polynomial regres-

sion mobility prediction) are introduced as follows.

Average rate mobility prediction uses the following

steps to predict the location of a mobile terminal unit. As

shown in Figure 2, the last and current geographical lo-

cations of the mobile subscriber are denoted as A(Xi-1,

Yi-1) and B(Xi, Yi), respectively, and the predictive geo-

graphical location of the mobile subscriber is denoted as

C(Xi+1, Yi+1). First we calculate average rate v between A

and B, in which vx is the component of v in direction x,

and v y is the component of v in direction y. Then we esti-

mate the average rate between B and C which may be
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Figure 2. Average rate mobility prediction algorithm.



taken as v � �. Initially, the value of � is assigned 1.

Then � can be adjusted in accordance with the recent

situation at regular intervals. By doing so, the future lo-

cation of mobile subscriber can be predicted.

Polynomial regression mobility prediction [26] uses

the following steps to predict the location of a mobile ter-

minal unit.

Step 1 � Preprocessing step

In prediction, some previous locations are important

for determining the next predictive location. Let the pre-

vious location data at H times compose an original data

sequence S(p) (p = 1, 2, …, H). To intensify the poly-

nomial regression-based curve fitting, the preprocessing

procedure of accumulated generating operation is ado-

pted to achieve the accuracy of the prediction results.

The preprocessing procedure generates a new data se-

quence S '(n) by accumulating the previous n location

data records, which are formulated by the following equ-

ation:

(3)

The purpose of the preprocessing procedure is to smooth

the fitting curve. For instance, an original data sequence

of {3, 6, 4} becomes {3, 9, 13} after preprocessing.

Step 2 � Mobility prediction step

After the preprocessing step, the new data sequence

is used as the input data for curve fitting in the mobility

prediction step. The predictive location in the new se-

quence is denoted as Spre'(n + 1), which is computed as

follows:

(4)

where P(.) is a polynomial function with k + 1 unknown

coefficients as follows:

(5)

Let Rh be the location of the previous h-th process.

Then, the sum of the square of the difference between

actual Rh and predictive P(t) of the previous n processes

is defined as

(6)

To determine each coefficient ai, each ai in each poly-

nomial can be treated as a variable. We take the partial

differential of each ai in equation (6), and then set each

partial differential equation to zero. Then we can obtain

the following equivalent polynomials:

(7)

After determining all the summations of t in equation

(7), we can simplify this matrix of polynomials to an

upper triangle matrix of polynomials. Each coefficient

ai can be determined by the native Gauss elimination

method, where i = H, H � 1, H � 2, ..., 0. Consequently,

the polynomial function of P(tn+1) in equation (4) is ob-

tained, i.e., the prediction of the pre-processed Spre'(n+1)

is determined. Since Spre'(n+1) and S'(n+1) can be com-

puted by equation (4), the predictive location of the

original sequence Spre(n+1) and S(n+1) can be deter-

mined by the reverse transformation of equation (3).

(8)

It is obvious that the complexity of average rate mo-

bility prediction algorithm is less than that of the polyno-

mial regression mobility prediction algorithm, but the

prediction accuracy of the former is also less than the lat-

ter. When the mobile subscriber is located at higher sen-

sitive ranges of cell, the probability of cell transforma-

tion is higher. For achieving higher prediction accuracy,

the polynomial regression mobility prediction algorithm

is applied, vice versa. By doing this, we can not only en-

sure the prediction accuracy but also reduce the com-

plexity of operation.

Our proposed mobility prediction algorithm based

on dividing sensitive ranges is described as follows.

Firstly, we calculate the minimum distance between the

current locations of the mobile subscriber and the border
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to decide the sensitivity for the current location. If the

sensitivity is the lowest in the cell, we will do nothing

and directly predict that the next cell is still the same one

as the current cell. If the sensitivity is the medium in the

cell, we will use the average rate mobility prediction

mentioned above to predict the next cell. Finally, we will

use the polynomial regression mobility prediction men-

tioned above to predict the future cell if the sensitivity is

the highest in the cell.

4. Simulations and Performance Evaluation

In this section, a simulation experiment is conducted

to investigate the effect of our algorithm. In the simula-

tion scenarios, 1000 mobile subscribers move randomly

at a walking speed in a Wi-Fi environment with 400 hot

points, in which 5000 cell records are selected randomly

as the original data set. In the data set, each subscriber

terminal unit has its own record, which contains the time

and the cell in that time. Since the moving speed of the

mobile subscriber has been considered in defining the di-

viding sensitive ranges, it would not affect the accuracy

of the proposed prediction algorithm. The performance

is analyzed in stationery and universality, where the

length of prediction is the number of mobility prediction

and can be measured by t/T (in which t is the total time

spent by the mobility prediction; T is the period of mobil-

ity prediction, i.e., the mobility prediction is executed

once every T seconds). The accuracy of prediction is re-

lated with T. In simulation, T is assigned 5 seconds,

which are adapted according to the subscriber’s walking

speed. For comparison of performance, the order-1 Mar-

kov predictor [27] which has been verified to have better

performance is taken as a contrast.

The order-1 Markov predictor can predict the loca-

tion of mobile subscriber at next time from its current

location context. Let the cell records which a mobile

subscriber passes through be a1, a2, ..., an, and let sub-

string L = a1 a2 ... an. The location of the mobile sub-

scriber is regarded as a random variable X. Let X(i, j) be

a string Xi, Xi+1, ..., Xj representing the sequence of ran-

dom variables Xi, Xi+1, ..., Xj for any 1 � i � j � n. In the

order-1 Markov predictor, X behaves as follows, i � {1,

2, ..., n}.

(9)

(10)

Let A be the set of all possible locations. If a � A, then

P(Xi = ai | ...) denotes the conditional probability where

Xi takes the value ai. These probabilities can be repre-

sented by a transition probability matrix M. The predic-

tor scans the row of M corresponding to the current con-

text a, choosing the entry with the highest probability

for its prediction.

Since our algorithm adjusts a part of parameters, such

as �, the initial performance is reduced shortly when the

movement characteristics of the terminal unit are modi-

fied abruptly (see Figure 3). Since the order-1 Markov

predictor is based on the location history, its performance

is bad initially, but becomes better with the growth of the

prediction length (see Figure 4). Finally, its performance

becomes stationary when the length of prediction is

about 4000 (see Figure 4). Figures 3 and 4 show that our

algorithm performs well in stationery, especially when

the length of prediction is larger than 100. The accuracy

rate is up to 100% and the average accuracy rate is about

93.4%.

The mobility prediction algorithm based on dividing

sensitive ranges predicts the future cell of a terminal unit

according to its own real-time movement characteristics,

so it is appropriate for most terminal units. The order-1

Markov predictor is based on the transition probability

matrix, so it is not suitable for the terminal units whose

movement characteristics are not marked. Figures 5 and
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6 show that our algorithm performs well in universality,

regardless of the length of prediction, in which the accu-

racy rate is concentrated between 92% and 95%.

To sum up, the mobility prediction algorithm based

on dividing sensitive ranges introduces the concept of

sensitive range. The complexity of algorithm is concen-

trated in the high sensitivity range, which makes the use

of predictive resources more reasonable. The mobility

prediction algorithm based on dividing sensitive ranges

can perform better in accuracy with the same complexity.

Through simulation and analysis, the mobility prediction

algorithm based on dividing sensitive ranges also per-

forms well in both stationery and universality.

5. Conclusion

In this paper, we have proposed a new mobility pre-

diction algorithm based on dividing sensitive ranges.

The proposed scheme introduces the concept of sensitive

ranges. The complexity of algorithm is concentrated in

the high sensitivity range, which makes it more reason-

able to use the predictive resources. In addition, our met-

hod can obtain better accuracy rate with the same com-

plexity. The results of simulation confirm the remarkable

performance improvement of our scheme. A line of fu-

ture work is to consider the performance of our algo-
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Figure 7. The universality of algorithm in long length of pre-
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rithms in actual applications both in homogeneous net-

works and heterogeneous networks.
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