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Abstract

In contrast to the use of fixed-length decision window for analyzing the stream of audio frames

seen in many audio event detection applications, a variable-sized decision window approach is

proposed in this paper. The control of the window size is governed by a fuzzy logic controller (FLC)

which estimates the difference between the likelihood of a targeted audio event and that of the normal

acoustic background in order to adjust the window size. The FLC is designed to stretch the window

while the monitored environment remains “aurally hot” for collecting more audio frames to ensure the

reliability and correctness of the detection and to do the opposite if the context gets “aurally calm”.

Such a situation-dependent behavior is essential to application where reliable and real-time response is

the major concern, for which the fixed-length decision window may not suffice.

Key Words: Audio Event Detection, Decision Window, Fuzzy Logic Controller, Gaussian Mixture

Model, Feature Extraction

1. Introduction

Audio event detection [1�4] is getting a lot more at-

tentions in surveillance and security applications where

video from cameras used to be the sole source of informa-

tion input [5�8], as audio events may convey more useful,

sometimes even dominant, clues indicating the occur-

rence of certain singular situation when video informa-

tion is unreliable or even unavailable in the darkness.

A typical process for audio event detection would

feed the stream of audio frames (vectors of extracted

acoustic features, that is) into the event classifier by

which successive analysis on a pre-determined number

of audio frames is conducted and then the decision as to

whether an audio event being detected over the associ-

ated time span, so called the decision window (DW), is

made, as depicted in Figure 1.

As is clearly seen, for a fixed-length DW covering n

audio frames of �t ms time interval, the process makes a

decision of event detection every n � �t ms, regardless of

the aural situation in the context, which may be calm or

noisy. A too-long DW might face the concern of real-

time response, which is essential to all surveillance and

security applications, whereas a too-short one would in-

stead encounter the problem of false alarms against

sudden/intermittent acoustic changes in the background,

which is equally undesired either.

The idea of variable-sized DW thus arises and is the

core of the proposed audio event detection system de-

scribed in the following sections.

2. Audio Event Detection System

Figure 2 shows the structure of the proposed audio

event detection system, where each frame consists of

160 audio samples with 50% overlaps with leading and

trailing neighbor frames, respectively. Note that at 8K

Hz sampling rate, the time span for each frame is thus 20
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Figure 1. DW with fixed-length, each covering the same number of audio frames, n.

Figure 2. Audio event detection system.



ms and, as such, for a fixed-length DW covering n frames,

the event decision will be made every (n + 1) � 10 ms.

2.1 Acoustic Features

The acoustic features extracted from the audio sam-

ples include LPC (Linear Prediction Coefficients), LPCC

(Linear Prediction Cepstral Coefficients) and MFCC

(Mel Frequency Cepstral Coefficients), and the use of

which is common practices in audio segmentation and

classification [9�11]. As LPC is sensitive to vocal sounds,

it is widely exploited in speech recognition and speaker

identification, and is thus chosen in the proposed system

for monitoring singular audio event: female screaming in

this case. The details for LPC computation can be found

in [12,13].

LPCC is derived from the impulse response of the

acoustic model [13] and is thus good for catching signal

changes, background noises (normal) or monitored sounds

(singular) alike. It is chosen for comparing with the ef-

fect of LPC so that a sudden or abrupt variation in back-

ground acoustic condition will not be mistaken for a sin-

gular event.

MFCC is a more delicate human auditory model in

the form of multivariate Gaussian distributions [13] and

has been known to be not only robust against noises or

sudden signal changes, but also effective in discriminat-

ing vocal and non-vocal audio event, and is thus chosen.

2.2 Sound Classification Model

The Event-Model deployed here is basically a GMM

classifier consisting of two separate GMM models, one

for background sound, and the other for singular sound.

Mathematically, a GMM is a weighted sum of M

Gaussians, denoted as

where wi is the weight, �i is the mean and �i is the

covariance.

To establish a GMM model given a set of acoustic fea-

ture vectors X = {xn � n = 1, 2, …, N}, the Expecta-

tion-Maximization (EM) algorithm [14] is adopted in

the system and implemented as follows:

(1) � initialization is performed by a binary splitting vec-

tor quantization algorithm [15]; �i is in diagonal form

for computational consideration; M is determined by

the Bayesian Information Criterion as suggested in

[16].

(2) The computation for GMM parameters is, as sug-

gested by the name EM, basically an iterative process

through which GMM parameters are progressively

updated for maximizing the expectation value of the

acoustic data.

REPEAT

{Expectation computation:

(1)

where

(2)

�-update for f (�) maximization:

(3)

(4)

(5)

}UNTIL (� convergence achieved)

The number of iterations typically goes as high as se-

veral thousands. In the training phase, three GMM mo-

dels for the auditory contexts “office space”, “parking
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lot” and “home residence” are established, respectively;

also build are three GMMs for “female screaming” in

each of the three auditory contexts with recording col-

lected from 15 females as the singular audio event to be

detected.

2.3 Classification with Fixed-Length DW

Consider the classifier operating with a decision

window covering n acoustic vectors of D dimensions, X

= {xi � i = 1, 2, …, n}, together with two sound models, �1

for normal events and �2 for singular events.

The class of X is determined by maximizing the a

posteriori probability P(�s � X),

(6)

Note that

(7)

and

(8)

However, in real implementation, Eq. (6) is replaced by

(9)

for simplicity.

For audio event detection using fixed-length DW, as

are in many currently existing cases, the number of audio

frames in Eq. (9), n, is therefore also fixed. The setting of

a relatively narrow DW may potentially increase the rate

of false alarms in the case of sudden and abrupt fluctua-

tions in the background acoustic condition, and that of a

too wide DW may not suffice the need of real-time re-

sponse due to making decisions at a longer periodicity. It

is therefore desirable to have the width of DW be situa-

tion-dependent for enhancing overall performance of

audio event detection.

3. Variable-Sized DW by FLC

The length of the decision window should be small

when encountering a somewhat “aurally calm” situation

so that decision of event detection could be undertaken at

higher rate and be stretched at “aurally hot” moments.

An FLC mechanism is conceived for this purpose.

3.1 Short Timeslot Likelihood Difference

An index STLD (Short Timeslot Likelihood Differ-

ence) for governing the length of the decision window in

the case of two sound models is devised as follows:

(10)

where �1 and �2 are the sound models in consideration,

f (xi � �1) and f (xi � �2) are given by Eq. (7), representing

the likelihood of �1 and �2 model classification, respec-

tively, for frame xi.

The rationale behind Eq. (10) is that at the beginning

stage covering m frames, say, of a decision window, if

the class inclination of the frames has clearly exhibited,

one term in Eq. (10) will be substantially greater than the

other. As a consequence, a salient STLD value is ac-

quired, indicating that a narrow decision window would

suffice. If the class of the m frames can not be resolved,

both terms in Eq. (10) would be trivial and lead to an in-

significant STLD implying the need of a wide DW in or-

der to collect more frames for classification. Figure 3 il-

lustrates the “phenomenon” implicated by Eq. (10).

3.2 STLD-Driven FLC

Fuzzy Logic Controller has been deployed in many

applications where empirical expertise is engineered in

the form of rule set/base [17,18], including audio appli-

cations [19]. As already explained, the STLD index can

be used as the key to DW size control and, as a result, an

FLC driven by two IF-THEN fuzzy rules is designed ac-

cordingly:

Rule 1: If STLD is small,

Then WL is big.
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Rule 2: If STLD is big,

Then WL is small.

Where STLD is the input for the FLC and WL, the win-

dow length, is the output of the FLC.

Quantitatively, the FLC rule set is transformed into

Rule 1: If STLD is M1 (STLD),

Then WLB = f1 (STLD),

Rule 2: If STLD is M2 (STLD),

Then WLS = f2 (STLD), (11)

where

(12)

(13)

(14)

(15)

(16)

In the formulation, M1(�) and M2(�) are membership

functions of STLD, as shown in Figure 4, and WL, the

DW length to be determined by the STLD-controlled

FLC, is a weighted sum of f1(�) and f2(�). It is observed

from Eqs. (12�14) that for STLD < STLD1, WL is solely

determined by f1(�), simply the case of Rule 1; whereas

for STLD > STLD2, WL is determined by f2(�) alone, as is

the case of Rule 2.

The FLC now has six hyper-parameters (a1, a2, b1,

b2, STLD1 and STLD2) to be fixed, for which an iterative

process is devised as follows

Step 1: Let STLD1 : STLD2 = 1 : 3 and give an initial

value to STLD1.

Step 2: Estimate the parameters a1 and b1 under the con-

dition STLD < STLD1, wherein M1(STLD) = 1,

M2(STLD) = 0, and

The procedure for fixing a1 and b1 is explained

in the following pseudo-code sequence:

a1 = initial value; b1 = 0; k = 0;
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Figure 4. Membership functions.

Figure 3. DWs with variable length governed by STLD (Short Timeslot Likelihood Difference) indices.



F 0 = event_detection_ rate(WL = a1 � STLD + b1,

training_database);

a1 += �a1; k ++;

F k = event_detection_ rate(WL = a1 � STLD + b1,

training_database);

if (F k > F k � 1)

Repeat

{a1 += �a1; k ++;

F k = event_detection_ rate(WL = a1 � STLD

+ b1, training_database);

} while (F k > F k � 1);

else

Repeat

{a1 �= �a1; k ++;

F k = event_detection_ rate(WL = a1 � STLD

+ b1, training_database);

} while (F k > F k � 1);

b1 += �b1; k ++;

F k = event_detection_ rate(WL = a1 � STLD + b1,

training_database);

if (F k > F k � 1)

Repeat

{b1 += �b1; k ++;

F k = event_detection_ rate(WL = a1 �

STLD + b1, training_database);

} while (F k > F k � 1);

else

Repeat

{b1 �= �b1; k ++;

F k = event_detection_ rate(WL = a1 �

STLD + b1, training_database);

} while (F k > F k � 1);

return F k;

In the pseudo-code sequence, the rate of correct

detection returned by event_detection_ rate(WL,

X) is defined below

(17)

Step 3: Estimate the parameters a2 and b2 under the con-

dition STLD > STLD2, wherein M1(STLD) = 0,

M2(STLD) = 1, and

The determination of a2 and b2 is done by the

same process for a1 and b1.

Step 4: Re-estimate the parameter STLD2 under the

condition STLD1 < STLD < STLD2, wherein

M1(STLD) =
STLD STLD

STLD STLD

2

2 1

�

�
, M2(STLD) =

STLD STLD

STLD STLD

�

�

1

2 1

, and

With a1 and b1 together with a2 and b2 already

obtained at step 2 and step 3 respectively, a new

value for STLD2 can be found through the tuning

for best recognition rate process too.

Step 5: Update STLD1 such that STLD1 : STLD2 = 1 : 3.

Repeat from step 2 until the settings of a1, a2, b1,

b2, STLD1 and STLD2 maximize the system per-

formance over the training dataset (60 sec. screa-

ming sounds, 20 sec. in each of three types of

background environments, recorded from each

of the female subjects).

3.3 Time Complexity Analysis in Online

Applications

In an online audio event detection application, the

decision window length is appropriately calculated by

the well-trained STLD-driven FLC. The overhead of

finding the decision window length in terms of the num-

ber of multiplications, as compared to the conventional

fixed-length decision window approach, can be analyzed

through its computation defined by Eq. (12). For STLD <

STLD1, WL = a1 � STLD + b1 which requires 1 multiplica-
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tion, as is for the case when STLD > STLD2, WL = a2 �

STLD + b2.

For STLD1 < STLD < STLD2,

the computation of which involves 4 multiplications.

Thus, compared to the fixed-length decision window

method, the computation of the decision window length

by the STLD-driven FLC does not increase any time com-

plexity in calculation. The proposed approach in this pa-

per will be efficient and effective for the audio event de-

tection system to be implemented in an online application.

4. Experiments

The training and performance of the proposed audio

event detection system are respectively reported in the

following subsections.

4.1 Database and Experiment Design

In the training phase, three GMM models for “office

space”, “parking lot” and “living room” were built using

10-minute recording in each environment. The recording

was undertaken at 8K Hz sampling rate, from which LPC,

LPCC and MFCC were extracted for each 20 ms frame

(consisting of 160 samples, i.e.). Note that a 12-th order

LPC, a 12-th order LPC/mel cepstrum and a 12-th order

delta cepstrum were utilized [13]. Three GMM models

for “female screaming” in each of the three environments

were also built using 2/3 of a 180-second (60 sec. for

each environment) recording from each of a group of 15

female subjects for extracting the same set of 3 acoustic

features; the subjects were requested to scream in every

possible way they could during the recording.

The rest one-third of the screaming data (20 sec. for

each environment and totally 900 sec. for all 15 females

in all the three environments) was used for FLC para-

meter-tuning as previously described.

In the event detection testing phase, an entirely new

group of 15 females was recruited for the screaming re-

cording of 60 sec. each (20 sec. for each of the three envi-

ronments).

4.2 Experiment Results

During the testing phase, the GMM classifier with

the proposed FLC-regulated DW was put to detect audio

events occurring in a background audio stream of 15

minutes in length. Three experiments were conducted in

“office space”, “parking lot” and “living room” respec-

tively, and several observations on the effects of the pro-

posed approach are presented in tabulation for compari-

son, as are briefed below.

(1) Table 1 shows that, using LPC alone, the approach

exploiting variable-sized DW governed by FLC

achieves an average of 92%, 93.5% and 95% accu-

racy for event detection in the three testing contexts

respectively, where the window size varies between

Wmin and Wmax, with an average of Wavg. With LPC

alone, Table 2 shows the performance of the fixed-

length DW scheme with a variety of fixed DW set-

tings, from 0.5 sec. to 5 sec. at an increment of 0.5

sec., and in all cases the accuracy is inferior to the

scores in Table 1. It is further noted that, against the

variable-sized DW, the fixed DW reaches competi-

tive scores of 91% at 3-sec. WL, 93.33% at 2.5-sec.

WL and 95% at 1.5-sec. WL, respectively in the three

testing contexts: the settings of DW fall within the

corresponding ranges of DW variation [Wmin, Wmax]

associated with the FLC-regulated DW operation.

(2) Similar observations from the case of using LPCC

alone are also made, as shown in Table 3 and 4.

(3) Table 5 and 6 present the experiment results in the

case of using MFCC feature.
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Table 1. Event detection by an FLC-regulated DW, using

only LPC feature

Variable-sized

DW
Living room Parking lot Office space

Wmin. 3.12 sec. 2.23 sec. 1.12 sec.

Wmax. 3.96 sec. 2.88 sec. 1.58 sec.

Wavg. 3.55 sec. 2.56 sec. 1.33 sec.

Accuracyavg. 92% 93.5% 95%



(4) In the experiment, acoustically the noisiest back-

ground is the living room, followed by the parking

lot, and then the office space. Such a phenomenon

seems to be reflected by the range of WL variation,

WR = [Wmin, Wmax], when the -driven FLC operated in

the three contexts. To be specific,

WR (office space) < WR (parking lot) <

WR (living room),

regardless of whichever of the three acoustic features

used.

(5) For all the testing in the 3 backgrounds, MFCC leads

to the best performance in audio event detection, LPCC

the second and LPC the third, regardless of which-

ever control scheme on DW size being taken, as shown

in Figures 5, 6 and 7.

5. Conclusion

An STLD-driven FLC mechanism is devised for re-

gulating the DW size in the application of audio event

detection, and for all testing cases exploiting 3 indi-

vidual acoustic feature in three operating backgrounds

where the performance of audio event detection is exam-

ined, the proposed scheme of variable-sized DW sur-

passes the fixed-length DW. Moreover, it is noted that
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Table 4. Event detection by fixed-length DW, using only

LPCC feature

DW length Living room Parking lot Office space

0.5 sec. 83.67% 087.5% 092.5%

1 sec. 87.67% .0090% 94.67%

1.5 sec. .0089% 090.5% 096.5%

2 sec. 90.67% 93.33% 96.67%

2.5 sec. 91.67% .0095% 96.67%

3 sec. .0093% .0095% .0096%

5 sec. 93.33% .0095% 96.67%

Average 89.86% 92.33% 95.67%

Table 5. Event detection by an FLC-regulated DW using

only MFCC feature

Variable-sized

DW
Living room Parking lot Office space

Wmin. 3.15 sec. 2.18 sec. 1.17 sec.

Wmax. 3.92 sec. 2.91 sec. 1.68 sec.

Wavg. 3.52 sec. 2.55 sec. 1.41 sec.

Accuracyavg. 95% 98.5% 98.5%

Table 6. Event detection by fixed-length DW, using only

MFCC feature

DW length Living room Parking lot Office space

0.5 sec. 084.5% 88.33% 93.33%

1 sec. 88.33% 90.67% 95.33%

1.5 sec. 090.5% 091.5% .0098%

2 sec. 91.33% 94.67% .0098%

2.5 sec. 092.5% 98.33% 98.33%

3 sec. .0094% .0098% .0098%

5 sec. .0095% 98.33% 98.33%

Average 90.88% 94.26% 97.05%

Table 2. Event detection by fixed-length DW, using only

LPC feature

DW length Living room Parking lot Office space

0.5 sec. 80.83% 83.33% 91.67%

1 sec. 81.67% .0086% 93.33%

1.5 sec. .0084% .0087% .0095%

2 sec. .0086% 91.33% 94.67%

2.5 sec. 89.33% 93.33% .0095%

3 sec. .0091% .0093% .0095%

5 sec. 91.67% 93.33% .0095%

Average 86.36% 89.62% 94.24%

Table 3. Event detection by an FLC-regulated DW, using

only LPCC feature

Variable-sized

DW
Living room Parking lot Office space

Wmin. 3.18 sec. 2.31 sec. 1.15 sec.

Wmax. 3.98 sec. 2.92 sec. 1.63 sec.

Wavg. 3.57 sec. 2.61 sec. 1.36 sec.

Accuracyavg. 93.5% 95% 97%

Figure 5. Living room audio event detection.



the performance of the fixed-length DW reaches the

score competitive against FLC-regulated DW at a DW

setting that falls within the range of size variation of the

latter, which declares the effectiveness of the design pro-

posed in this paper.
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Figure 6. Parking lot audio event detection.
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