
Hierarchical Particle Swarm Optimization for

Optimization Problems

Chia-Chong Chen

Department of Electronics Engineering, Wufeng Institute of Technology,

Chiayi, Taiwan, R.O.C.

Abstract

In this paper, a hierarchical particle swarm optimization (HPSO) is proposed to improve the

premature convergence in the PSO approach. In the proposed HPSO approach, all particles are

arranged in a regular tree structure and move up or down in the tree based on their fitness value. For the

velocity update of each particle, it depends on the position of each particle in the tree. Besides, a

mutation operator is added into the proposed HPSO approach. Consequently, the diversity of the

population increases so that the HPSO approach can improve the premature convergence in the PSO

approach. Finally, several benchmark functions for optimization problems are utilized to illustrate the

effectiveness of the proposed HPSO approach to improving the premature convergence.

Key Words: Evolutionary Algorithm, Hierarchical Particle Swarm Optimization, Optimization

Problem

1. Introduction

During the last several decades, there has been a

growing interest in evolutionary computing, which has

inspired from the mechanisms of natural evolution. Ac-

cording to the common idea of all these evolutionary al-

gorithms, the environmental pressure causes natural se-

lection and this makes the fitness of population rise.

Therefore, the evolutionary algorithm is an effective

tool to solve optimization problems. Among existing

evolutionary algorithms, genetic algorithm (GA) [1]

and particle swarm optimization (PSO) [2,3] are the

well-known tools for solving optimization problems.

Genetic algorithm is a method to obtain an optimal so-

lution by applying a theory inspired by biological evo-

lution. It employs the Darwinian survival-of-the-fittest

theory to yield the best of the characters among the po-

pulation and performs a random information exchange to

produce better individuals. The GA uses reproduction,

crossover and mutation operators to search the global

optimum solution in the solution space. In the search of

the GA, the mutation operator works for exploration

and the reproduction and crossover operators work for

exploitation. Therefore, the GA approach provides a

way to possibly obtain the global optimum solution.

However, when the number of the parameters for the

considered optimization problem is very large, the solu-

tion space will increase enormously so that the expense

of the evolutionary computation will become almost im-

practical. Moreover, the GA is not effective for search-

ing the solution space locally due to crossover-based-

search, and the diversity of the population sometimes

decreases rapidly. These will lead to the lack of the lo-

cal search ability and the premature convergence. In or-

der to improve the local search ability, GA with the

one-point crossover operator (OEGA), GA with the

two-point crossover operator (TEGA), GA with the uni-

form crossover operator (UEGA), GA with the BLX-�

crossover operator (BLXGA) [4] and GA with the or-

thogonal crossover operator [5] are proposed. In 1995,

Tamkang Journal of Science and Engineering, Vol. 12, No. 3, pp. 289�298 (2009) 289

*Corresponding author. E-mail: ccchen@mail.wfc.edu.tw

the PSO idea was originally introduced by Kennedy

and Eberhart as an evolutionary computation technique

inspired by swarm intelligence such as bird flocking,

fish schooling and even human social behavior. The

PSO is initialized with a population of random solu-

tions of the fitness function. The individuals in the pop-

ulation are called as particles. The position of each par-

ticle is updated by a new velocity which is based on its

previous velocity, its personal best position and the

global best position. According to the velocity update

of each particle, the PSO has memory so that the infor-

mation of good solutions is retained by all individuals.

Furthermore, the PSO has constructive cooperation be-

tween individuals so that individuals in the population

share information between them. In the search of the

PSO, the velocity update of each particle works for

much of exploitation and less of exploration. Conse-

quently, the diversity of the population decreases so that

the search of the PSO results in the premature conver-

gence. Much works have focused on the PSO to prevent

the search process from the premature convergence

[6�9]. In [9], the neighborhood of a particle is defined

as the several closest individuals in every iteration so

that a dynamic neighborhood is computationally inten-

sive. In [8], a spatial extension is assigned to the parti-

cles and different collision strategies are applied to

avoid crowding of the swarm. In [7], several neighbor-

hood topologies have been examined for improving the

PSO. In [6], a dynamically changing branching degree

of the tree topology is introduced to improving the per-

formance. In this paper, a hierarchical particle swarm

optimization (HPSO) is proposed to increase the diver-

sity of the population so that the premature conver-

gence in the PSO approach is improved.

The rest of this paper is organized as follows. Sec-

tion 2 describes the PSO in detail. Section 3 proposes

the HPSO to improve the premature convergence in the

PSO. In Section 4, the proposed HPSO is compared

with some existing evolutionary algorithms using 10

benchmark functions with a low dimension and a high

dimension. Finally, Section 5 draws conclusions about

the proposed HPSO approach to solving optimization

problems.

2. Particle Swarm Optimization

PSO is an evolutionary computation technique pro-

posed by Kennedy and Eberhart. Its development was

based on observations of the social behavior of animals

such as bird flocking, fish schooling, and swarm theory.

Like the GA, the PSO is initialized with a population of

random solutions of the fitness function. The individuals

p
k
, k = 1, 2, ..., m, in the population are called as parti-

cles. The PSO is an iterative method based on the search

behavior of a swarm of m particles in a multidimensional

search space. In each iteration, the velocity v k, k � {1, 2,

..., m} and the position p
k
, k � {1, 2, ..., m} of each par-

ticle are updated. According to the fitness values of the

updated individuals, the personal best position p
k

pbest
, k �

{1, 2, ..., m} of each particle and the global best position

p
gbest

among all the particles are updated. For the update

of the velocities in the PSO, a particle p
k

is influenced by

its personal best position p
k

pbest
and the global best posi-

tion p
gbest

. Therefore, the PSO searches the global opti-

mum solution by adjusting the trajectory of each particle

toward its personal best position and the global best posi-

tion. According to the above description about the PSO,

the procedure of the PSO is described in the following:

Step 1. Initialize the PSO.

(a) Set the number of individuals (m), the number of

iterations (G), and the constants for the PSO (c1, c2,

w).

(b) Generate randomly initial individuals p
k
, k = 1, 2,

..., m, in the population.

(c) Generate randomly initial velocity vectors v k, k =

1, 2, ..., m.

Step 2. Calculate the fitness value of each individual and

set initial p , f
k

pbest

k

pbest
and initial p , f

gbest gbest
for

the initial population.

(a) Set f fit(p)k k
� , k = 1, 2, ..., m, where fit(p)

k
repre-

sents the fitness value of the individual p
k

and then

set p p , f f
k

pbest

k k

pbest

k� � , k = 1, 2, ..., m.

(b) Find the index J of the individual with the best fit-

ness value by J arg max f
k 1

m

k

pbest�
�

and then set p
gbest

= p
J

pbest
, f f

gbest

J

pbest� .

(c) Set iter = 1.

290 Chia-Chong Chen

Step 3. Update p , f
k

pbest

k

pbest
and p , f

gbest gbest
.

(a) Update p , f
k

pbest

k

pbest
in the following:

Calculate f fit(p)k k
� , k = 1, 2, ..., m, if f fk k

pbest� ,

then set p p
k

pbest

k
� and f fk

pbest

k� .

(b) Update p , f
gbest gbest

in the following:

If f fk

pbest gbest� , k � {1, 2, ..., m} then set p
gbest

=

p
k

pbest
, f f

gbest

k

pbest� .

Step 4. Update the velocity vector v k and the position

vector p
k

of each particle.

(a) Update the velocity vectors in the following:

(1)

where rand() is a uniformly distributed random

number in [0,1].

(b) Update the position vectors in the following:

(2)

Step 5. Decrease the velocity vector by the constant w �

[0,1].

(3)

Step 6. iter = iter + 1, if iter > G then go to Step 7; other-

wise go to Step 3.

Step 7. Based on the global best position p
gbest

with the

best fitness value f gbest, the desired solution for

the considered optimization problem can be de-

termined.

Consequently, each individual p
k

keeps track of its

own best solution, which is associated with the best fit-

ness value f k

pbest
, it has achieved so far in a vector p

k

pbest
.

Furthermore, the best solution among all the individu-

als obtained so far in the population is kept track of as

the vector p
gbest

associated with the global best fitness

value f gbest. According to Step 4, each position vector p
k

is assigned with a randomized velocity vector v k ac-

cording its own and its companions’ flying experiences

so that the position vector p
k

searches around its per-

sonal best vector p
k

pbest
and the global best vector p

gbest
.

The adjustment toward p
k

pbest
and p

gbest
by Step 4 is con-

ceptually similar to the crossover operator utilized by

the GA. However, all the particles move toward the

global best position p
gbest

in Step 4 and the PSO has no

the mutation operator. These probably lead to the pre-

mature convergence so that the obtained solution is

trapped into the local maximum. In order to prevent the

premature convergence, the HPSO is proposed in the

next section.

3. Hierarchical Particle Swarm Optimization

In this section, the HPSO is proposed to improve the

premature convergence in the PSO. In the HPSO, all par-

ticles are arranged in a hierarchy that defines a regular

tree structure. The structure of the regular tree is deter-

mined by the height (h) and the branching degree (d) of

the tree so that m nodes, sk, k = 1, 2, …, m, are generated

for constructing the regular tree, where m d
d

h

� �
�

1
1

is the number of nodes in the tree. In the initial popula-

tion, m individuals, p
k
, k = 1, 2, ..., m, are generated

initially and arranged orderly in the m nodes of the

regular tree. That is, the individual p
k
, k � {1, 2, ..., m},

is arranged in the node sk, k � {1, 2, …, m}. For exam-

ples, a regular tree with h = 3 and d = 2 is shown in Fig-

ure 1. In Figure 1, seven nodes sk, k = 1, 2, …, 7, are

generated for constructing a tree and p
k
, k = 1, 2, ..., 7,

are arranged in the nodes sk, k = 1, 2, …, 7, respectively.

In each iteration, the positions of two individuals in the

tree are probably exchanged. For a individual p
k

in the

non-root node sj, j � {2, 3, ..., m}, the fitness value of

the individual p
k

is compared with that of the individual

p
k

f
, where the individual p

k

f
is in the parent node of sj. If

fit(p) fit(p)
k k

f� , then p
k

and p
k

f
exchange their positions

within the tree. Therefore, the individual p
k

will move

up one level in the tree. For examples, a regular tree

with h = 3 and d = 2 is considered and the individuals in

the population are arranged in the tree shown in Figure

2. Assume that the fitness values of the individuals p
i
, i

= 1, 2, ..., 7, are 0.7, 0.1, 0.3, 0.2, 0.6, 0.5, 0.3, respec-

Hierarchical Particle Swarm Optimization for Optimization Problems 291

tively, and the individual p
k

in the node s3 is considered

for changing its position in the tree. According to Fig-

ure 2, p
k

and p
k

f
are p

1
and p

5
, respectively. Because

fit(p)
1

is larger than fit(p)
5

, p
1

and p
5

swap their posi-

tions within the tree so that the individuals are arranged

in the tree shown in Figure 3. For the update of the ve-

locities in HPSO, the velocity vectors of the particles

p
k
, k = 1, 2, ..., m, are updated as follows:

(4)

where the parameter vector of p
f

depends on the posi-

tion of p
k

in the tree. If p
k

is in the root node, then p
f

=

p
gbest

; otherwise p p
f

k

f� . For the update of the velocities

in the HPSO, the particle p
k

is influenced by p
k

pbest
and

p
k

f
and the particle in the root node can indirectly in-

fluence all the other particles. Therefore, the HPSO

searches the global optimum solution by adjusting the

trajectory of each particle toward its personal best posi-

tion and the position of the particle in its parent node.

Consequently, the arrangement of the individuals leads

to a different influence for the individuals at different

positions. The changing arrangement of the individuals

can help preserving diversity in the search. Furthermore,

a mutation operator is added to keep the diversity of the

population. According to the above description, the

flowchart of the HPSO is shown in Figure 4 and the pro-

cedure of the HPSO for optimization problems is de-

scribed in the following:

Step 1. Initialize the HPSO.

(a) Set the height of the tree (h), the branching degree

of the tree (d), the maximum number of iterations

(G), the constants for the HPSO (c1, c2, w, r) and

the mutation rate (Pm).

(b) Generate randomly the initial population P in the

nodes of the tree.

Each individual of the population is expressed as

follows:

(5)

292 Chia-Chong Chen

Figure 2. The individuals arranged in the tree for the example.
Figure 3. After the position exchange, the individuals ar-

ranged in the tree for the example.

Figure 1. The individuals of the initial population arranged in
a regular tree with h = 3 and d = 2.

where x , i {1, 2, ..., D}i

k � , is randomly gener-

ated as follows:

(6)

where the range of the parameter x i

k is defined as

[x , x]i

min

i

max .

(c) Generate randomly initial velocity vectors v k, k =

1, 2, ..., m.

Each velocity vector is expressed as follows:

(7)

where v i

k, i � {1, 2, ..., D}, is randomly generated

as follows:

(8)

Step 2. Calculate the fitness value of each individual and

set initial p
k

pbest
, f k

pbest
for each individual and in-

itial p
gbest

, f gbest for the population.

(a) Set f fit(p)k k
� , k = 1, 2, ..., m, and then set

f fk

pbest

k� , p p
k

pbest

k
� , k = 1, 2, ..., m.

(b) Find the index J of the individual with the best fit-

ness by J arg max f
k 1

m

k

pbest�
�

. Set f f
gbest

J

pbest� , p
gbest

=

p
J

pbest

(c) Set iter = 1.

Step 3. Update the position of the individual in the node

sj, where j = ((iter � 1) mod (m � 1)) + 2 � {2, 3, ...,

m}. Here, (iter � 1) mod (m � 1) is the modulus af-

ter (iter � 1) is divided by (m � 1). Assume the in-

dividual p
k

is in the node sj and the individual p
k

f
is

in the parent node of sj. If fit(p) fit(p)
k k

f� , then p
k

and p
k

f
swap their positions within the tree.

Step 4. Update p , f
k

pbest

k

pbest
and p

gbest
, f gbest.

(a) f fit(p)k k
� , k = 1, 2, ..., m. If f fk k

pbest� , then set

p
k

pbest
= p

k
and f fk

pbest

k� .

(b) If f fk

pbest gbest� , k � {1, 2, ..., m}, then set p
gbest

=

p
k

pbest
, f f

gbest

k

pbest� .

Step 5. Update the velocity vectors v k, k = 1, 2, ..., m,

and the parameter vectors p
k
, k = 1, 2, ..., m.

(a)
(9)

where p
f

depends on the position of the individual

Hierarchical Particle Swarm Optimization for Optimization Problems 293

Figure 4. The flowchart of the HPSO.

p
k

in the tree. If p
k

is in the root node of the tree

then p p
f gbest� ; otherwise p p

f

k

f� .

(b) (10)

Step 6. Mutate randomly the individual p [x x
k 1

k

2

k� �

x]D

k , k � {1, 2, ..., m}.

If Pm � rand(), then x x (x x)
i

k

i

max

i

k

i

min
* * * *� � � ,

where i* = round(D · rand() + 0.5). round(D ·

rand() + 0.5) rounds(D · rand() + 0.5) to the near-

est integer.

Step 7. Decrease v k and w by the constants w � [0,1] and

r � [0,1], respectively.

(a) (11)

(b) If w � 0.1 then w = w · r; otherwise w = 0.1.

Step 8. iter = iter + 1, if iter > G then go to Step 9; other-

wise go to Step 3.

Step 9. Based on p
gbest

with the best fitness f gbest, the best

solution for the considered optimization problem

can be determined.

4. Simulations

In this section, 10 benchmark functions including

unimodal and multimodal functions [10] are employed

to examine the efficiency of the proposed HPSO for opti-

mization problems. The test function, parameter domain,

and global optimum for each benchmark function are

listed in Table 1. In order to examine the proposed HPSO

approach to optimization problems with a low dimension

and a high dimension, the dimensions of the 10 bench-

mark functions are set to D = 10 and D = 100 in the ex-

periments, respectively. The initial conditions for the

294 Chia-Chong Chen

Table 1. The test function, parameter domain, and global optimum for each benchmark function

Test function xi domain Optimum

1

1

2
sin() sin()

3

D
i

i

i

x
f x

�

� �� � 	
 ��

� [3,13] 1.21598D (max)

1
1

2 1

1

2
sin() sin()

3

D
i i

i i

i

x x
f x x

�
	

	
�

� �� � 	 	
 ��

� [3,13] � 2D (max)

2

3

1

10cos(2) 10
D

i i

i

f x x�
�

� �� � 	�
� [-5.12,5.12] 0 (min)

2

4

1

D

i

i

f x
�

�� [-5.12,5.12] 0 (min)

� �5

1

sin(10)
D

i i

i

f x x�
�

� � [-1,2] 1.85D (max)

6

1

sin(10)

10

D
i

i i

x
f

x

�
��

� � [-0.5,0.5] 0 (min)

2

1

1

cos(2)
0.2

7 20 20

D

Di
i

i

i

x
x

DDf e e e

�
�

�
�

�
�

� 	 � �
[-30,30] 0 (min)

8

1

418.9828 sin()
D

i i

i

f D x x
�

� � � [-500,500] 0 (min)

1
2 2 2

9 1

1

100() (1)
D

i i i

i

f x x x
�

	
�

� �� � 	 ��
� [-5.12,5.12] 0 (min)

2

10

1 1

1
cos() 1

4000

D D
i

i

i i

x
f x

i� �

� � 	� � [-600,600] 0 (min)

proposed HPSO method to each benchmark function are

given in the following: the height of the tree: h = 3, the

branching degree of the tree: d = 4, the mutation rate: Pm

= 0.1, the constants for the HPSO: (c1, c2, w, r) = (2, 2,

0.9, 0.95) and the maximum number of iterations for

each benchmark function is listed in Table 2. The results

of the proposed HPSO approach to each benchmark

function using 30 independent runs for D = 10 and D =

100 are shown in Tables 3 and 4, respectively. Further-

more, Tables 5 and 6 compare our results of the proposed

HPSO approach with the results obtained by the PSO ap-

proach [11] for each benchmark function with D = 10

and D = 100, respectively. According to Tables 5 and 6, it

reveals that the PSO approach method might lead to the

earlier convergence so that the result of the PSO ap-

proach is trapped into the local optimum solution owing

Hierarchical Particle Swarm Optimization for Optimization Problems 295

Table 4. Results of the proposed HPSO approach to each benchmark function using 30 independent runs for D = 100

Test function Best function value Worst function value Mean function value Optimal function value

f1 121.5963 121.5917 121.5949 121.598

f2 181.8365 160.8262 171.8359 � 200

f3 0 3.1631 � 10
-50

1.0929 � 10
-60

0

f4 3.8393 � 10
-25

2.6131 � 10
-21

2.8784 � 10
-22

0

f5 185.0257 183.2530 184.7754 185

f6 3.8982 � 10
-15

3.8982 � 10
-15

3.8982 � 10
-15

0

f7 1.2027 � 10
-11

6.1932 � 10
-11

3.2233 � 10
-11

0

f8 5506.1 9491.4 7875.4 0

f9 93.2766 95.7135 95.2838 0

f10 0 1.6331 � 10
-13

7.2127 � 10
-15

0

Table 3. Results of the proposed HPSO approach to each benchmark function using 30 independent runs for D = 10

Test function Best function value Worst function value Mean function value Optimal function value

f1 12.1598 12.1591 12.1597 12.1598

f2 17.9436 15.5322 16.8107 � 20

f3 0 0.002 9.524 � 10
-5

0

f4 8.785 � 10
-29

1.8 � 10
-19

00.1.2 � 10
-20

0

f5 18.5027 18.5003 18.5025 18.5

f6 3.8982 � 10
-16

3.8982 � 10
-16

3.8982 � 10
-16

0

f7 2.3404 � 10
-13

1.0019 � 10
-80

1.3208 � 10
-90

0

f8 0.0715 247.032 74.0719 0

f9 0.3932 5.5504 3.9732 0

f10 0 0 0 0

Table 2. Number of the iterations for each benchmark

function

D = 10 D = 100

Test function
Number of

the iterations
Test function

Number of

the iterations

f1 100 f1 1000

f2 500 f2 5000

f3 100 f3 1000

f4 100 f4 1000

f5 500 f5 5000

f6 100 f6 1000

f7 100 f7 1000

f8 500 f8 5000

f9 100 f9 1000

0f10 100 f10 1000

to the lack of swarm’s diversity. However, the proposed

HPSO has more diversity such that it is hard to be

trapped into the local optimum owing to having more

searching choices for the particle swarm. Tables 7 and 8

compare our results of the proposed HPSO approach

with the results obtained by several evolutionary algo-

rithms [4] for each benchmark function with D = 10 and

D = 100, respecitvely. Tables 7 and 8 show that the pro-

posed HPSO outperforms these evolutionary algorithms.

Consequently, the proposed HPSO is an effective tool

for solving optimization problems.

5. Conclusion

In this paper, a hierarchical particle swarm is pro-

posed to overcome the premature convergence in the

PSO approach to optimization problems. In order to im-

proving the premature convergence, the particles are ar-

ranged in a regular tree and move up or down in the tree

according to their fitness values. The velocity update of

296 Chia-Chong Chen

Table 5. Comparison between our results of the proposed HPSO and the results obtained by the PSO method for each

benchmark function with D = 10

HPSO PSO
Test

function
Best function

value

Worst function

value

Mean function

value

Best function

value

Worst function

value

Mean function

value

f1 12.1598 12.1591 12.1597 11.6227 7.3027 10.29990

f2 17.9436 15.5322 16.8107 11.7136 7.1255 9.5543

f3 0 0.002 9.524 � 10
-5

43.7737 93.16910 68.15310

f4 8.785 � 10
-29

1.8 � 10
-19

00.1.2 � 10
-20

01.3020 8.2790 3.4799

f5 18.5027 18.5003 18.5025 07.5354 3.2205 5.5299

f6 3.8982 � 10
-16

3.8982 � 10
-16

3.8982 � 10
-16

00.0113 0.0125 0.0118

f7 2.3404 � 10
-13

1.0019 � 10
-80

1.3208 � 10
-90

02.2658 5.0638 3.5164

f8 0.0715 247.032 74.0719 3535 3872 3741

f9 0.3932 5.5504 03.9732 59.1235 1182.124 443.85

f10 0 0 0 8.8 29.28 16.992

Table 6. Comparison between our results of the proposed HPSO and the results obtained by the PSO method for each

benchmark function with D = 100

HPSO PSO
Test

function
Best function

value

Worst function

value

Mean function

value

Best function

value

Worst function

value

Mean function

value

f1 121.5963 121.5917 121.5949 79.8338 57.0058 67.6352

f2 181.8365 160.8262 171.8359 53.7467 27.2423 35.6987

f3 0 3.1631 � 10
-50

1.0929 � 10
-60

990.248 1188.882 1091.34

f4 3.8393 � 10
-25

2.6131 � 10
-21

2.8784 � 10
-22

173.534 318.2602 247.663

f5 185.0257 183.2530 184.7754 25.2286 10.0302 16.5484

f6 3.8982 � 10
-15

3.8982 � 10
-15

3.8982 � 10
-15

00.1238 0.125 0.1247

f7 1.2027 � 10
-11

6.1932 � 10
-11

3.2233 � 10
-11

07.9584 9.6176 8.7934

f8 5506.1 9491.4 7875.4 37040 40737 38509

f9 93.2766 95.7135 95.2838 70562 215022 129307

f10 0 1.6331 � 10
-13

7.2127 � 10
-15

292.8 497.6 395.178

each particle depends on the position of the particle in

the tree. Furthermore, a mutation operator is added in the

HPSO approach. Consequently, the diversity of the po-

pulation in the proposed HPSO will increase so that the

HPSO approach has a much opportunity of finding the

global optimum solution. According to the simulation

results for 10 benchmark functions, it is clear that the

proposed HPSO approach is superior to the other evolu-

tionary algorithms in the ability to finding the global

optimum solution.

Acknowledgement

This research was supported in part by the National

Science Council of the Republic of China under contract

NSC 98-2221-E-274-009.

References

[1] Davis, L., Handbook of genetic algorithms, New York:

Van Nostrand Reinhold (1991).

[2] Eberhart, R. and Kennedy, J., “A New Optimizer

Using Particle Swarm Theory,” Proc. Int. Sym. Micro

Machine and Human Science, Nagoya Japan, pp. 39�

43 (1995).

[3] Kennedy, J. and Eberhart, R., “Particle Swarm Optimi-

zation,” Proc. IEEE Int. Conf. Neural Networks, Perth,

Australia, pp. 1942�1948 (1995).

[4] Eshelman, L. J. and Schaffer, J. D., Real-coded genetic

algorithms and interval schemata, Foundation of Ge-

Hierarchical Particle Swarm Optimization for Optimization Problems 297

Table 7. Mean function values obtained by the proposed HPSO method and other evolutionary algorithms to each

benchmark function using 30 independent runs for D = 10

Test function HPSO IEA OEGA UEGA TEGA BLXGA OGA

f1 12.1597 12.116 12.119 12.110 12.113 12.150 12.109

f2 16.8107 15.320 16.190 16.390 15.890 16.520 15.240

f3 9.524 � 10
-5

0 15.420 8.94 9.57 11.630 6.48 17.620

f4 0.1.2 � 10
-20

000.0003 000.0004 000.0003 000.0006 000.0092 000.0003

f5 18.5025 14.600 15.820 15.540 15.240 15.850 14.010

f6 3.8982 � 10
-16

00.054 00.035 00.040 00.039 00.017 00.072

f7 1.3208 � 10
-90

1.00 0.23 0.36 0.75 1.93 1.70

f8 74.0719 667.4000 848.1000 1859.50000 1132.00000 714.7000 584.2000

f9 03.9732 116.4400 41.390 39.560 23.000 22.630 94.570

f10 0 00.999 01.001 01.030 01.002 01.030 001.002

Table 8. Mean function values obtained by the proposed HPSO method and other evolutionary algorithms to each

benchmark function using 30 independent runs for D = 100

Test function HPSO IEA OEGA UEGA TEGA BLXGA OGA

f1 121.5949 120.44 90.52 89.36 87.63 88.90 116.71

f2 171.8359 153.15 94.59 89.49 94.27 74.47 139.71

f3 1.0929 � 10
-60

213.46 795.750 819.650 791.650 763.420 367.51

f4 2.8784 � 10
-22

001.60 145.520 151.430 154.970 67.89 014.96

f5 184.7754 131.31 76.72 74.50 76.06 51.53 115.48

f6 3.8982 � 10
-15

000.65 03.86 03.94 03.82 05.45 001.63

f7 3.2233 � 10
-11

003.69 16.93 16.83 16.97 14.35 009.47

f8 7875.4 8011 24645 24160 24723 24794 12294

f9 95.2838 2081 96556 89514 97990 16086 05282

f10 7.2127 � 10
-15

032.86 511.930 01002 537.090 237.840 48.250

netic Algorithm-2. L. D. Whitley, ED. San Mateo, CA:

Morgan Kaufmann (1993).

[5] Zhang, Q. and Leung, Y. W., “An Orthogonal Genetic

Algorithm for Multimedia Multicast Routine,” IEEE

Transactions Evolutionary Computation, Vol. 3, pp.

53�62 (1999).

[6] Janson, S. and Middendorf, M., “A Hierarchical Par-

ticle Swarm Optimizer and Its Adaptive Variant,” IEEE

Transactions on Systems, Man, and Cybernetics - Part

B: Cybernetics, Vol. 35, pp. 1272�1282 (2005).

[7] Jian, W., Xue, Y. C. and Qian, J. X., “Improved Par-

ticles Swarm Optimization Algorithms Study Based

on the Neighborhoods Topologies,” The 30th Annual

Conference of the IEEE Industrial Electronics Society,

Busan Korea, pp. 2192�2196 (2004).

[8] Krink, T., Vesterstrom, J. S. and Riget, J., “Particle

Swarm Optimization with Spatial Particle Extension,”

Proc. IEEE Congr. Evolutionary Computation (CEC

2002), pp. 1474�1479 (2002).

[9] Suganthan, P. N., “Particle Swarm Optimizer with

Neighborhood Operator,” in Proc. Congr. Evolution-

ary Computation (CEC 1999), pp. 1958�1962 (1999).

[10] Ho, S. Y., Shu, L. S. and Chen, J. H., “Intelligent Evo-

lutionary Algorithms for Large Parameter Optimiza-

tion Problems,” IEEE Transactions on Evolutionary

Computation, Vol. 8, pp. 522�541 (2004).

[11] Lin, H. S., Design of a novel orthogonal particle

swarm optimization. Master thesis, Feng Chia Univer-

sity, Taiwan, Republic of China (2004).

Manuscript Received: Jan. 22, 2008

Accepted: Sep. 22, 2008

298 Chia-Chong Chen

