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Abstract

The M/G/1 retrial queue with Bernoulli feedback and single vacation is studied in this paper,

where the server is subjected to starting failure. The retrial time is assumed to follow an arbitrary

distribution and the customers in the orbit access the server under FCFS discipline. The server leaves

for a vacation as soon as the system becomes empty. When the server returns from the vacation and

finds no customers, he waits free for the first customer to arrive from outside the system. The system

size distribution at random points and various performance measures are derived. The general

decomposition law is shown to hold good for this model also. Some of the existing results in [7] are

deduced as special cases from our results.
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1. Introduction

Retrial queues have been widely used to model many

problems in telephone switching systems, telecommuni-

cation networks and computers competing to gain ser-

vice from a central processor unit. Most of the papers on

retrial queues have considered the system without feed-

back. A more practical retrial queue with feedback oc-

curs in many practical situations: for example, multiple

access telecommunication systems, where messages turn-

ed out as errors are sent again, can be modeled as retrial

queue with feedback. Choi and Kulkarni [1] have studied

M/G/1 retrial queue with feedback. A remarkable and

unavoidable phenomenon in the service facility of a qu-

euing system is its breakdown. Kulkarni and Choi [2]

have analysed the M/G/1 retrial queue with server sub-

jected to repairs and breakdowns. Further, Choi et al. [3]

have investigated the M/G/1 retrial queue with customer

collisions. Recently, Yang and Li [4] have studied the

M/G/1 retrial queue with the server subject to starting

failures. They obtained analytical results for the queue

length distribution and the stochastic decomposition law,

where the retrial time is assumed to be exponentially dis-

tributed. Fayolle [5] has investigated an M/M/1 retrial

queue where the customers in the retrial group form a

queue and only the customer at the head of the queue can

request a service to the server after exponentially distrib-

uted retrial time with constant rate. A retrial queuing sys-

tem with FCFS discipline and general retrial times has

been extensively discussed by Gomez-Cortal [6]. Kri-

shna, Pavai and Vijayakumar [7] discussed a retrial qu-

eue with feedback and starting failures.

In this paper, we consider an M/G/1 retrial queue

with Bernoulli feedback and single vacation where the

server is subjected to starting failures. We also assume

that the retrial time is governed by an arbitrary distribu-

tion and that the customer at the head of the orbit queue is

allowed for access to the server.

2. Model Description

We consider a single-server retrial queue with the
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server being subjected to starting failures and single va-

cation. New customers arrive from outside the system

according to a Poisson process with rate �. We assume

that there is no waiting space and therefore if an arriving

customer finds the server busy or down, the customer is

obliged to leave the service area and repeat his request

for service after some random time. Between trials, the

blocked customer joins a pool of unsatisfied customers

called “orbit” in accordance with an FCFS discipline.

That is, only the customer at the head of the orbit queue is

allowed for access to the server. Successive inter-retrial

times of any customer are governed by an arbitrary pro-

bability distribution function A(x), with corresponding

density function a(x) and Laplace-Stieltjes transform

�*(�). If the server is free, an arriving (primary or retrial)

customer must start (turn on) the server, which takes neg-

ligible time. If the server is started successfully (with a

certain probability), the customer gets service immedi-

ately. Otherwise, the “repair” for the server commences

immediately and the customer must leave for the orbit

and make a retrial at a later time. Successive service

times are independent with common probability distri-

bution function B(x), density function b(x), Laplace-

Stieltjes transform �*(�) and first three moments �1, �2

and �3. Similarly, the successive repair times are inde-

pendent and identically distributed with probability dis-

tribution function D(x), density function d(x), Laplace-

Stieltjes transform �*(�) and first three moments �1, �2

and �3. As soon as the system becomes empty, the server

leaves the system for a vacation period of random length.

On returning from the vacation, the server either finds no

customers and waits free until the arrival of a primary

customer, or finds at least one customer and begins ser-

vice. Vacation times are independent with common pro-

bability distribution function G(x), density function g(x),

Laplace-Stieltjes transform �*(�) and first three mo-

ments �1, �2 and �3.

After the customer is served completely, he will de-

cide either to join the retrial group again for another ser-

vice with probability p or to leave the system forever

with probability q (= 1 – p). It is assumed that the proba-

bility of successful commencement of service is � for a

new customer who finds the server free and sees no other

customer in the orbit (the counterpart of a customer who

starts a busy period in the standard M/G/1 system) and is

� for all other new and returning customers. Interarrival

times, retrial times, service times, vacation times and

breakdown times are assumed to be mutually independ-

ent. From this description, it is clear that at any service

completion, the server becomes free and in such a case, a

possible new (primary) arrival and the one (if any) at the

head of the orbit queue, compete for service.

The state of the system at time t can be described by

the Markov process {N(t); t 	 0} = {(C(t), X(t), 
0(t),


1(t), 
2(t), 
3(t)), t 	 0}, where C(t) denotes the server

state (0, 1, 2 or 3 according as the server being free, busy,

repair or on vacation out of the service facility, respec-

tively) and X(t) corresponds to the number of customers

in orbit at time t. If C(t) = 0 and X(t) > 0, then 
0(t) re-

spresents the elapsed retrial time, if C(t) = 1, then 
1(t)

corresponds to the elapsed time of the customer being

served, if C(t) = 2 and X(t) > 0, then 
2(t) represents the

elapsed repair time at time t, if C(t) = 3 and X(t) 	 0, then


3(t) represents the elapsed vacation time at time t. The

functions r(x), �(x), �(x) and 
(x) are the conditional

completion rates (at time x) for repeated attempts, for

service, for repair and for vacation, respectively; i.e., r(x)

= a(x) (1 – A(x))–1, �(x) = b(x) (1 – B(x))–1, �(x) = d(x) (1

– D(x))–1 and 
(x) = g(x) (1 – G(x))–1.

3. Steady State Distribution

For the process {X(t); t 	 0} we define the probability

P0(t) = p {C(t) = 0, X(t) = 0},

P0 = Lim P (t)
t

0��
;

and the probability densities

Pn(x, t) dx = p {C(t) = 0, X(t) = n, x � 
0(t) < x + dx},

for t 	 0, x 	 0 and n 	 1,

Pn(x) = Lim P (x, t)
t

n��
, for x 	 0 and n 	 1;

Qn(x, t) dx = p {C(t) = 1, X(t) = n, x � 
1(t) < x + dx},

for t 	 0, x 	 0 and n 	 0,

Qn(x) = Lim Q (x, t)
t

n��
, for x 	 0 and n 	 0;

Rn(x, t) dx = p {C(t) = 2, X(t) = n, x � 
2(t) < x + dx},

for t 	 0, x 	 0 and n 	 1,

Rn(x) = Lim R (x, t)
t

n��
, for x 	 0 and n 	 1;
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and

Wn(x, t) dx = p {C(t) = 3, X(t) = n, x � 
3(t) < x + dx},

for t 	 0, x 	 0 and n 	 0,

Wn(x) = Lim W (x, t)
t

n��
, for x 	 0 and n 	 0.

By the method of supplementary variable technique, we

obtain the following system of equations that govern

the dynamics of the system behavior:

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

with the boundary conditions

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Wn(0, t) = 0, n 	 1 (3.15)

and the normalizing condition

(3.16)

Letting t � � in equations (3.1)�(3.16), one has

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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(3.23)

(3.24)

The steady-state boundary conditions are

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

Wn(0) = 0, n 	 1 (3.31)

and the normalizing condition is

(3.32)

To solve equations (3.17)�(3.32), we define the gener-

ating functions

The following theorem discusses the steady state distri-

bution of the system.

Theorem 3.1:

The joint steady state distribution of {X(t); t 	 0} is

obtained as

(3.33)

(3.34)

(3.35)

(3.36)

where
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and the probability P0 can be determined from the nor-

malization condition.

Proof:

Multiplying equations (3.17)�(3.31) by zn and sum-

ming over n, n = 0, 1, 2, ... one can obtain the following

equations:

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Solving the partial differential equations (3.37)�(3.40),

to obtain

(3.45)

(3.46)

(3.47)

(3.48)

Using (3.46)�(3.48) in (3.41) and solving for P(0,z), af-

ter some manipulations, one can get

(3.49)

Combining (3.45), (3.49) and (3.42) and on simplifica-

tion we have

(3.50)
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Similarly, substituting (3.45) and (3.49) into (3.43) we

get

(3.51)

Combining (3.45)�(3.51), we obtain the required re-

sults (3.33)�(3.35).

For the limiting probability generating functions P(x,z),

Q(x,z), R(x,z) and W(x,z) define P z P x z dx( ) ( , )�
�

�
0

,

Q z Q x z dx( ) ( , )�
�

�
0

, R z R x z dx( ) ( , )�
�

�
0

, and W(z) =

W x z dx( , )
0

�

� and the probability generating function of

the number of customers in the system under steady sta-

te is K(z) = P0 + P(z) + zQ(z) + R(z) + W(z). Then the

main result is given by

Theorem 3.2:

In steady state,

(3.52)

(3.53)

(3.54)

(3.55)

and

(3.56)

where

(3.57)

Proof:

Integrating the equations (3.33)�(3.36) from 0 to �

with respect to x, we obtain respectively (3.52)�(3.55). At

this point, the only unknown is P0 which can be deter-

mined using the normalizing condition, P0 + P(1) + Q(1) +

R(1) + W(1) = 1. Thus, setting z = 1 in (3.52)�(3.55) and

applying L’Hopital’s rule whenever necessary, we get

after using the normalizing condition and rearrangement.

which yields (3.57).

Finally, the probability generating function K(z) = P0 +
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P(z) + zQ(z) + R(z) + W(z) of the number of customers

in the system is obtained by using (3.52)�(3.55) and

some mathematical manipulations yield (3.56).

Remark 3.1.

If � = � = q = 1, then (3.56) and (3.57) become

(3.58)

and

(3.59)

If the vacation do not exist, the results (3.58), (3.59)

will reduce to the same results in [7] which agree with

Gomez-Corral [6] without feedback and starting fail-

ures.

Remark 3.2.

Further, if the retrial time distribution is exponential

with parameter 
, then �*
(�) = 
/(� + 
). In this case (3.58)

yields

(3.60)

If the vacation do not exist equation (3.60) coincides

with the equation (2.13) in [9].

We now obtain some performance measures for the

system in steady state. Let U be the server utilization, (or

the steady state probability that the server is attending a

customer) that is the server is busy, I, the steady state prob-

ability that the server is idle during the retrial time, R, the

steady state probability that the server is under repair, W,

the steady state probability that the server is on vacation

and D, the steady probability that the server is down or

free or on vacation. From Theorem 3.2, we obtain:

U = Q(1) = � �1/q,

W = W(1) = �1 W(0, z)

and

D = P0 + P(1) + R(1) + W(1) = 1 –
��1

q

The mean number of customers in the system LS under

steady state conditions is obtained by differentiating

(3.56) with respect to z and evaluation at z = 1.

The orbit characteristics are of considerable interest in

retrial queues. For the model under consideration, we

obtain the probability of orbit being empty as

V = P0 + Q0 + W0
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where Q0 is the probability that the orbit is empty while

the server is busy, P0 is the probability of an empty sys-

tem and W0 is the probability that the orbit is empty

while the server is on vacation out of the system, we ob-

serve that

and

where P0 is given in (3.57) and

Define H(z) = P0 + P(z) + Q(z) + R(z) + W(z). Then

H(z) represents the probability generating function for

the number of customers in the orbit. Using (3.52)�

(3.55) and simplifying, we get

Hence, the mean number of customers in the orbit is

given by

Let WS be the average time a customer spends in the

system under steady state. Due to little’s formula, we

have

WS =
LS

�

4. Stochastic Decomposition

Stochastic decomposition has been widely observed

among M/G/1 type queues with server vacations (see, for

example, [10�13]). A key result, in these analyses is that

the number of customers in the system in steady state at a

random point in time is distributed as the sum of two in-

dependent random variables, one of which is the number

of customers in the corresponding standard M/G/1 queu-

ing system (in steady state) at a random point in time.

The other random variable may have different probabil-

istic interpretations in specific cases depending on how

the vacations are scheduled. Stochastic decomposition

has also been observed to hold for some M/G/1 retrial

queues [14,15].

Let "(z) be the probability generating function of the

number of customers in the M/G/1 queuing system with

Bernoulli feedback (see [16]) in steady state at a random

point in time, #(z) be the probability generating function

of the number of customers in the vacation system at a

random point in time given that the server is idle and

K(z) be the probability generating function of the ran-

190 G. S. Mokaddis et al.

*
0

0 *

[1 ( (1 ))]

( )

P z
Q

q

� �

� �

� �
�

* *

*

[1 ( (1 ))][1 ( (1 ))] (0, )

( )

z z W z

q

� � � �

� � �

� � � �
�

*

0

[1 ( )] (0, )W z
W

� �
�

�
�

* *
1 1

* *
1

[1 ( )][ ( ) ( ) (1 )]

( )[ ( ) ( ) (1 )]

p p
V

q q q

� � � � � �� � ��

� � �� � � � ��

� � � � �
�

� � �

*
1

* *
1

[1 ( )] (0, )

( )[ ( ) ( )(1 )]

p W z

q q

�� � �

� � �� � � � ��

�
�

� � �

* *

*

[1 ( )][1 ( )] (0, )

( )

p W z

q

� � � �

� � �

� �
�

� * *
0( ) [ (1 ) ( )] ( (1 ))H z P z z z z� � � � ��� � � �

�

�* *[1 ( (1 ))] ( (1 ))p z pz z z� � � �� � � � �

* *
0( ) (1 ) ( )[ ( (1 )) ]P z p z� � � � � � � � �� � � � �

* *[1 ( (1 ))][ ( (1 ))]z p z� � � � � �� � � � �

� �* *[ (1 ) ( )] (0, ) [( ) ( (1 ))z z W z z pz q z� � � �� ��� � � � ��

�* *( (1 ))][ (1 ) ( )z z z z�� � � � ��� � � � �� �

*
1 1

*
1 2 1

*
1

( )[2(1 ){ (1 ( )) }

(2 )] 2 ( )
`(1)

2[ ( ) ( ) (1 )]

q p

q p
Lq H

q q

� � �� � � ��

� � �� � � �� �

� � � � � ��

� � � �

� � �
� �

� � �

*
1 1

2
2 2 1 1

*
1 1

2{1 ( )}[ ( ) (1 )]

( ) 2 ( )

2[ ( ) ( ) (1 )]

p

p

p

� � � �� � ��

� �� �� � �� ��

� � � �� � ��

� � � �

� � � �
�

� � � �

*
1 1 1

*
1 2 1

*
1 1

*
1

(0, )[( ){2(1 )[ (1 ( )) ]

(2 )} 2 ( )]

2{ ( ) ( ) (1 )}

{ ( ) ( ) (1 )}

q W z q p

q p

p

q q

� � � � �� � � � �

� � �� � � �� �

� � � �� � ��

� � � � � ��

� � � �

� � �
�

� � � �

� � �

*
2 1 1

*
1 1

(0, ) 2 ( , )[ (1 ( )) ]

2{ ( ) ( ) (1 )}

q W z W o z q p

p

�� � �� � � � �

� � � �� � ��

� � �
�

� � � �



dom variable being decomposed. Then, the mathemati-

cal version of the stochastic decomposition law is

K(z) = "(z) ! #(z). (4.1)

We now verify that the decomposition law applied to

the retrial model analyzed in this paper. For the M/G/1

queue with Bernoulli feedback queuing system [16], we

have

(4.2)

To obtain an expression for #(z) we first define idle

in our context. We say that the server is idle if the server

is either under repair or free or on vacation. (Note that in

retrial queues, there may be customers in the system even

when the server is idle). Under this definition, we have

Using the results (3.52), (3.54), (3.55) and (3.57) of

theorem 3.2, we obtain

(4.3)

From (2.56) we observe that K(z) = "(z) ! #(z) which

confirms that the decomposition law of [6] is also valid

for this special vacation system.
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