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Abstract

A distributed heterogeneous computing (HC) system consists of
diversely capable machines harnessed together to execute a set of
tasks that vary in their computational requirements. Heuristics are
needed to map (match and schedule) tasks onto machines in an HC
system so as to optimize some figure of merit. An HC system model is
needed to simulate different HC environments to allow the study of
the relative performance of different mapping heuristics under
different circumstances. This paper characterizes a simulated HC
environment by using the expected execution times of the tasks that
arrive in the system on the different machines present in the system.
This information is arranged in an “expected time to compute” (ETC)
matrix as a model of the given HC system, where the entry (i, j) is the
expected execution time of task i on machine j. The ETC model is
used to express the heterogeneity among the runtimes of the tasks to
be executed, and among the machines in the HC system. An existing
range-based technique to express heterogeneity in ETC matrices is
described. A coefficient-of-variation based technique to express
heterogeneity in ETC matrices is proposed, and compared with the
range-based technique. The coefficient-of-variation-based ETC
generation method provides a greater control over the spread of values
(i.e., heterogeneity) in any given row or column of the ETC matrix
than the range-based method.
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1. Introduction

A distributed heterogeneous computing (HC)
system consists of diversely capable machines
harnessed together to execute a set of tasks that vary
in their computational requirements. Heterogeneous
computing systems range from diverse elements or
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paradigms within a single computer (e.g., PASM
[19]), to a cluster of different types of PCs, to
coordinated, geographically distributed machines
with different architectures (e.g., a grid [6]). An HC
system provides a variety of capabilities that can be
orchestrated to execute multiple tasks with varied
computational requirements [4, 18]. HC systems are
important for efficiently solving collections of
computationally intensive problems.

These environments achieve high performance
by exploiting the affinity of different tasks to
different = computational  platforms,  while
considering the overhead of inter-machine
communication and the coordination of distinct data
sources and administrative domains. In an HC
system, tasks need to be matched to machines, and
the execution of the tasks must be scheduled. The
applicability and strength of HC systems are derived
from their ability to match computing needs to
appropriate resources.

Heuristics are needed to map (match and
schedule) tasks onto machines in an HC system so
as to optimize some figure of merit. The heuristics
that match a task to a machine can vary in the
information they use. For example, the current
candidate task can be assigned to the machine that
becomes available soonest (even if the task may
take a much longer time to execute on that machine
than else-where). In another approach, the task may
be assigned to the machine where it executes fastest
(but ignores when that machine becomes available).
Or the current candidate task may be assigned to the
machine that completes the task soonest, i.e., the
machine which minimizes the sum of task execution
time and the machine ready time, where machine
ready time for a particular machine is the time when
that machine becomes available after having
executed the tasks previously assigned to it (e.g.,
[15]).

The more sophisticated (and possibly wiser)
approaches to the mapping problem require
estimates of the execution times of all tasks (that can
be expected to arrive for service) on all the
machines present in the HC suite to make better
mapping decisions. One aspect of research on HC
mapping heuristics explores the behavior of the
heuristics in different HC environments. To use
simulation to test the relative performance of
different mapping heuristics under different
circumstances necessitates that there be a
framework for generating execution times of all the
tasks in the HC system on all the machines in the
HC system. Such a framework would, in turn,
require a quantification of heterogeneity to express
the variability among the runtimes of the tasks to be

executed, and among the -capabilities of the
machines in the HC system. The goal of this invited
paper is to present a methodology for synthesizing
simulated HC environments with quantifiable levels
of task and machine heterogeneity. This paper
characterizes the HC environments so that it will be
easier for researchers to describe the workload and
the machines used in their simulations based on a
common scale.

Given a set of heuristics and a characterization
of HC environments, one can determine the best
heuristic to use in a given environment for
optimizing a given objective function. In addition to
increasing one’s understanding of the operation of
different heuristics, this knowledge can help a
working re-source management system select which
mapper to use for a given real HC environment.

This research is part of a DARPA/ITO
Quorum  Program  project called MSHN
(pronounced “mission”) (Management System for
Heterogeneous Networks) [9]. MSHN is a
collaborative research effort that includes the Naval
Postgraduate School, NOEMIX, Purdue, and
University of Southern California. It builds on
SmartNet, an implemented scheduling framework
and system for managing resources in an HC
environment developed at NRaD [7]. The technical
objective of the MSHN project is to design,
prototype, and refine a distributed resource
management  system  that leverages the
heterogeneity of resources and tasks to deliver the
re-quested qualities of service.

A model for describing an HC system is
presented in Section 2. Based on that model, two
techniques for simulating an HC environment are
described in Section 3. Section 4 briefly discusses
analyzing the task execution time information from
real life HC scenarios. Some related work is
outlined in the Section 5.

2. Modeling Heterogeneity

To better evaluate the behavior of mapping
heuristics, a model of the execution times of the
tasks on the machines is needed so that the
parameters of this model can be changed to
investigate the performance of the heuristics under
different HC systems and under different types of
tasks to be mapped. One such model consists of an
expected time to compute (ETC) matrix, where the
entry (i, /) is the expected execution time of task 7 on
machine j. The ETC matrix can be stored on the
same machine where the mapper is stored, and
contains the estimates for the expected execution
times of a task on all machines, for all the tasks that
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are expected to arrive for service over a given
interval of time. (Although stored with the mapper,
the ETC information may be derived from other
components of a resource management system (e.g.,
[9])). In an ETC matrix, the elements along a row
indicate the estimates of the expected execution
times of a given task on different machines, and
those along a column give the estimates of the
expected execution times of different tasks on a
given machine.

The exact actual task execution times on all
machines may not be known for all tasks because,
for example, they might be a function of input data.
What is typically assumed in the HC literature is
that estimates of the expected execution times of
tasks on all machines are known (e.g., [8, 12, 14,
20]). These estimates could be built from task
profiling and machine benchmarking, could be
derived from the previous executions of a task on a
machine, or could be provided by the user (e.g., [3, 8,
10, 16, 22)).

The ETC model presented here can be
characterized by three parameters: machine
heterogeneity, task heterogeneity, and consistency.
The variation along a row is referred to as the
machine heterogeneity; this is the degree to which
the machine execution times vary for a given task
[1]. A system’s machine heterogeneity is based on a
combination of the machine heterogeneities for all
tasks (rows). A system comprised mainly of
workstations of similar capabilities can be said to
have “low” machine heterogeneity. A system
consisting of diversely capable machines, e.g., a
collection of SMP’s, workstations, and
supercomputers, may be said to have ‘“high”
machine heterogeneity.

Similarly, the variation along a column of an
ETC matrix is referred to as the task heterogeneity;
this is the degree to which the task execution times
vary for a given machine [1]. A system’s task
heterogeneity is based on a combination of the task
heterogeneities for all machines (columns). “High”
task  heterogeneity may occur when the
computational needs of the tasks vary greatly, e.g.,
when both time-consuming simulations and fast
compilations of small programs are performed.
“Low” task heterogeneity may typically be seen in
the jobs submitted by users solving problems of
similar complexity (and hence have similar
execution times on a given machine).

Based on the above idea, four categories were
proposed for the ETC matrix in [1]: (a) high task
heterogeneity and high machine heterogeneity, (b)
high task heterogeneity and Ilow machine
heterogeneity, (c¢) low task heterogeneity and high

machine heterogeneity, and (d) low task
heterogeneity and low machine heterogeneity.

The ETC matrix can be further classified into
two categories, consistent and inconsistent [1],
which are orthogonal to the previous classifications.
For a consistent ETC matrix, if a machine m, has a
lower execution time than a machine m, for a task #,
then the same is true for any task #. A consistent
ETC matrix can be considered to represent an
extreme case of low task heterogeneity and high
machine heterogeneity. If machine heterogeneity is
high enough, then the machines may be so much
different from each other in their compute power
that the differences in the computational
requirements of the tasks (if low enough) will not
matter in determining the relative order of execution
times for a given task on the different machines (i.e.,
along a row). As a trivially extreme example,
consider a system consisting of Intel Pentium III and
Intel 286. The Pentium III will almost always run
any given task from a certain set of tasks faster than
the 286 provided the computational requirements of
all tasks in the set are similar (i.e., low task
heterogeneity), thereby giving rise to a consistent
ETC matrix.

In inconsistent ETC matrices, the relationships
among the task computational requirements and
machine capabilities are such that no structure as
that in the consistent case is enforced. Inconsistent
ETC matrices occur in practice when: (1) there is a
variety of different machine architectures in the HC
suite (e.g., parallel machines, superscalars,
workstations), and (2) there is a variety of different
computational needs among the tasks (e.g., readily
parallelizable tasks, difficult to parallelize tasks,
tasks that are floating point intensive, simple text
formatting tasks). Thus, the way in which a task’s
needs correspond to a machine’s capabilities may
differ for each possible pairing of tasks to machines.

A combination of these two cases, which may
be more realistic in many environments, is the
partially-consistent ETC matrix, which is an
inconsistent matrix with a consistent sub-matrix [2,
15]. This sub-matrix can be composed of any subset
of rows and any subset of columns. As an example,
in a given partially-consistent ETC matrix, 50% of
the tasks and 25% of the machines may define a
consistent sub-matrix.

Even though no structure is enforced on an
inconsistent ETC matrix, a given ETC matrix
generated to be inconsistent may have the structure
of a partially consistent ETC matrix. In this sense,
partially-consistent ETC matrices are a special case
of inconsistent ETC matrices. Similarly, consistent
ETC matrices are special cases of inconsistent and
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partially-consistent ETC matrices.

It should be noted that this classification
scheme is used for generating ETC matrices. Later
in this paper, it will be shown how these three cases
differ in generation process. If one is given an ETC
matrix, and is asked to classify it among these three
classes, it will be called a consistent ETC matrix
only if it is fully consistent. It will be called
inconsistent if it is not consistent.

Often an inconsistent ETC matrix will have
some partial consistency in it. For example, a trivial
case of partial-consistency always exists; for any
two machines in the HC suite, at least 50% of the
tasks will show consistent execution times.

3. Generating the ETC Matrices
3.1. Range Based ETC Matrix Generation

Any method for generating the ETC matrices
will require that heterogeneity be defined
mathematically. In the range-based ETC generation
technique, the heterogeneity of a set of execution
time values is quantified by the range of the
execution times [2, 15]. The procedures given in this
section for generating the ETC matrices produce
inconsistent ETC matrices. It is shown later in this
section how consistent and partially-consistent ETC
matrices could be obtained from the inconsistent
ETC matrices.

Assume m is the total number of machines in
the HC suite, and ¢ is the total number of tasks
expected to be serviced by the HC system over a
given interval of time. Let U(a, b) be a number
sampled from a uniform distribution with a range
from a to b. (Each invocation of U(a, b) returns a
new sample.) Let R,y and R,., be numbers
representing task heterogeneity and machine
heterogeneity, respectively, such that higher values
for R,g and R, represent higher heterogeneities.
Then an ETC matrix e [0..(z-1), 0..(m-1)], for a
given task heterogeneity and a given machine
heterogeneity, can be generated by the range-based
method given in Figure 1, where e [i, j] is the
estimated expected execution time for the task i on
the machine ;.

As shown in Figure 1, each iteration of the
outer for loop samples a uniform distribution with a
range from 1 to R,y to generate one value for a
vector t . For each element of t thus generated, the
m iterations of the inner for loop (Line 3) generate
one row of the ETC matrix. For the i-th iteration of
the outer for loop, each iteration of the inner for
loop produces one element of the ETC matrix by
multiplying t[7] with a random number sampled

from a uniform distribution ranging from 1 to R,

In the range-based ETC generation, it is
possible to obtain high task heterogeneity low
machine heterogeneity ETC matrices with
characteristics similar to that of low task
heterogeneity high machine heterogeneity ETC
matrices if R = Ryaen. In realistic HC systems, the
variation that tasks show in their computational
needs is generally larger than the variation that
machines show in their capabilities. Therefore it is
assumed here that requirements of high
heterogeneity tasks are likely to be more
“heterogeneous” than the capabilities of high
heterogeneity machines (i.e., Ry » Ryacn). However,
for the ETC matrices generated here, low
heterogeneity in both machines and tasks is
assumed to be same. Typical values for R, for for
high and low heterogeneities are 10° and 10,
respectively. And similarly for R,.+., these values
are 10> and 10, respectively. Tables 1 through 4
show four ETC matrices generated by the
range-based method using the above-mentioned
typical values for R,y and R, The execution time
values in Table 3 are much higher than the execution
time values in Table 2. The difference in the values
between these two tables would be reduced if the
range for the low task heterogeneity was changed to
10°to 10 instead of 1 to 10.

Table 1. A low task heterogeneity low machine
heterogeneity matrix generated by the
range-based method.

my | my | ms3 | mg | ms | Mg | My
Hh! 22| 21 6| 16 15| 24| 13
t 7| 46 5| 28| 45| 43| 31
3| 64| 83| 45| 23| 58| 50 | 38
4| 53| 56| 26| 42| 53 91| 58
ts | 11| 12| 14 7 8 3| 14
61 33 31} 46| 25| 23| 39} 10
t71 24| 11| 17| 14 25| 35 4
tg | 20 17| 23 44 3| 18] 20
o | 13| 28| 14 71 34 6| 29
tio 2 5 7 7 6 3 7
tin| 16| 37 23| 22| 23| 12| 44
2 8| 66| 47| 11| 47| 55| 56

With the range-based method, low task
heterogeneity high machine heterogeneity ETC
matrices tend to have high heterogeneity for both
tasks and machines, due to method used for
generation. For example, in Table 2, original
T vector values were selected from 1 to 10. When
each entry is multiplied by a number from 1 to 100
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for high machine heterogeneity this generates a task
heterogeneity comparable to machine heterogeneity.
It is shown in Section 3.2 how to produce low task
heterogeneity high machine heterogeneity ETC
matrices which do show low task heterogeneity.

(1) for i from 0 to (z-1)

(2) T[l] = U( 15 Rtask)

(3) forj from 0 to (m-1)

(4) €[l,j] = T[i]x U( 15 Rmach)
(5) endfor

(6) endfor

Figure 1. The range-based method for generating ETC
matrices.

Table 2. A low task heterogeneity high machine
heterogeneity matrix generated by the
range-based method.

my | my| m3 | mg| ms | mg| my
f | 440 | 762 | 319 | 532 | 151 | 652 | 308
1, 459 | 205 [ 457 | 92| 92| 379 | 60
t3 | 499 | 263 | 92| 152 | 75| 18 | 128
14 | 421 | 362 | 347 | 194 | 241 | 481 | 391
ts | 276 | 636 | 136 | 355 | 338 | 324 | 255
ts | 89139 | 37| 67 91 53| 139
t7 | 404 | 521 | 54 | 295 | 257 | 208 | 539
tg| 49| 114 1279 | 22| 93| 39| 36
fo | 59| 35| 184 | 262 | 145 | 287 | 277
tio 71235| 44| 81330 56| 78
ti1 | 716 | 601 | 75 | 689 | 299 | 144 | 457
ti2 | 435 | 208 | 256 | 330 6 | 394 | 419

Table 3. A high task heterogeneity low machine heterogeneity matrix generated by the

range-based method.

m mp ms3

ms ms mg mq

t | 333,304 | 375,636 | 198,220

190,694 | 395,173 | 258,818 | 376,568

181,600 | 289,558 | 323,546 | 380,792

t3 | 75,696 | 103,564 | 438,703

129,944 | 67,881 | 194,194 | 425,543

ty | 194,421 | 392,810 | 582,168

248,073 | 178,060 | 267,439 | 611,144

ts | 466,164 | 424,736 | 503,137

325,183 | 193,326 | 241,520 | 506,642

te | 665,071 | 687,676 | 578,608

919,104 | 795,367 | 390,558 | 758,117

t7 | 177,445 | 227,254 | 72,944

139,111 | 236,971 | 325,137 | 347,456

tg | 32,584 | 55,086 | 127,709

51,743 | 100,393 | 196,190 | 270,979

to | 311,589 | 568,804 | 148,140

583,456 | 209,847 | 108,797 | 270,100

tio | 314,271 | 113,525 | 448,233

201,645 | 274,328 | 248,473 | 170,176

t | 272,632 | 268,320 | 264,038

140,247 | 110,338 | 29,620 | 69,011

iy | 489,327 | 393,071 | 225,777

71,622 | 243,056 | 445,419 | 213,477

Table 4. A high task heterogeneity high
range-based method.

machine heterogeneity matrix generated by the

m my ms

ma ms Me ms

t | 2,425,808 | 3,478,227 | 719,442

2,378,978 | 408,142 | 2,966,676 | 2,890,219

t | 2,322,703 | 2,175,934 | 228,056

3,456,054 | 6,717,002 | 5,122,744 | 3,660,354

t3 | 1,254,234 | 3,182,830 | 4,408,801

5,347,545 | 4,582,239 | 6,124,228 | 5,343,661

171 227,811 419,597 13,972

297,165 438,317 23,374 135,871

ts | 6,477,669 | 5,619,369 | 707,470

8,380,933 | 4,693,277 | 8,496,507 | 7,279,100

ts | 1,113,545 | 1,642,662 | 303,302

244,439 | 1,280,736 | 541,067 | 792,149

t7 | 2,860,617 161,413 | 2,814,518

2,102,684 | 8,218,122 | 7,493,882 | 2,945,193

tg | 1,744,479 | 623,574 | 1,516,988

5,518,507 | 2,023,691 | 3,527,522 | 1,181,276

to | 6,274,527 | 1,022,174 | 3,303,746

7,318,486 | 7,274,181 | 6,957,782 | 2,145,689

fio | 1,025,604 | 694,016 | 169,297

193,669 | 1,009,294 | 1,117,123 | 690,846

f1 | 2,390,362 | 1,552,226 | 2,955,480

4,198,336 | 1,641,012 | 3,072,991 | 3,262,071

t12 96,699 882,914 63,054

199,175 | 894,968 | 248,324 | 297,691
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3.2. Coefficient-of-Variation Based ETC Matrix
Generation

A modification of the procedure in Figure 1
defines the coefficient of variation, V, of execution
time values as a measure of heterogeneity (instead
of the range of execution time values). The
coefficient of variation of a set of values is a better
measure of the dispersion in the values than the
standard deviation because it expresses the standard
deviation as a percentage of the mean of the values
[13]. Let cand g be the standard deviation and

mean, respectively, of a set of execution time values.

Then V' = o/ u. The coefficient-of-variation-based
ETC generation method provides a greater control
over spread of the execution time values (i.e.,
heterogeneity) in any given row or column of the
ETC matrix than the range-based method.

The coefficient-of-variation-based (CVB)
ETC generation method works as follows. A task
vector, g, of expected execution times with the
desired task heterogeneity must be generated.
Essentially, ¢[7] is the execution time of task i on an
“average” machine in the HC suite. For example, if
the HC suite consists of an IBM SP/2, an Alpha
server, and a Sun SPARC 5 workstation, then ¢
would represent estimated execution times of the
tasks on the Alpha server.

To generate ¢, two input parameters are
needed: w5 and V. The input parameter, . 1S
used to set the average of the values in ¢. The input
parameter V. is the desired coefficient of variation
of the values in ¢. The value of V,,y quantifies task
heterogeneity, and is larger for higher task
heterogeneity. Each element of the task vector ¢ is
then used to produce one row of the ETC matrix
such that the desired coefficient of variation of
values in each row is V., another input parameter.
The value of V.., quantifies machine heterogeneity,
and is larger for higher machine heterogeneity. Thus
Huasks Viask, and Viaen are the three input parameters
for the CVB ETC generation method.

A direct approach to simulating HC
environments should use the probability distribution
that is empirically found to represent closely the
distribution of task execution times. However, no
standard benchmarks for HC systems are currently
available. Therefore, this research wuses a
distribution which, though not necessarily reflective
of an actual HC scenario, is flexible enough to be
adapted to one. Such a distribution should not
produce negative values of task execution times
(e.g., ruling out Gaussian distribution), and should
have a variable coefficient of variation (e.g., ruling
out exponential distribution).

The gamma distribution is a good choice for
the CVB ETC generation method because, with
proper constraints on its characteristic parameters, it
can approximate two other probability distributions,
namely the Erlang-k and Gaussian (without the
negative values) [13, 17]. The fact that it can
approximate these two other distributions is helpful
because this increases the chances that the simulated
ETC matrices could be synthesized closer to some
real life HC environment.

The uniform distribution can also be used but
is not as flexible as the gamma distribution for two
reasons: (1) it does not approximate any other
distribution, and (2) the characteristic parameters of
a uniform distribution cannot take all real values
(explained later in the Section 3.3).

The gamma distribution [13, 17] is defined in
terms of characteristic shape parameter, a, and scale
parameter, . The characteristic parameters of the
gamma distribution can be fixed to generate
different distributions. For example, if a is fixed to
be an integer, then the gamma distribution becomes
an Erlang-k distribution. If o is large enough, then
the gamma distribution approaches a Gaussian
distribution (but still does not return negative values
for task execution times).

Figures 2(a) and 2(b) show how a gamma
density function changes with the shape parameter a.
When the shape parameter increases from two to
eight, the shape of the distribution changes from a
curve biased to the left to a more balanced bell-like
curve. Figures 2(a), 2(c) and 2(d) show the effect on
the distribution caused by an increase in the scale
parameter from 8 to 16 to 32. The two-fold increase
in the scale parameter does not change the shape of
the graph (the curve is still biased to the left);
however the curve now has twice as large a domain
(i.e., range on x-axis).

The gamma distribution’s characteristic
parameters, o and P, can be easily interpreted in
terms of g, Viast, and V. For a gamma

distribution, o = ,6’\/;‘, and i = fa , so that

Vza/yzl/\/g (and o =1/V?). Then ayuy =
1/ Vil and apaen = 1 / Vi . Further, because
u=pPa, f=ula,and Bux = task / 0w Also,
for task 7, Buacn 1] = qli]/ Gmach-

Let G(a, f) be a number sampled from a
gamma distribution with the given parameters.
(Each invocation of G(a, f) returns a new sample.)
Figure 3 shows the general procedure for the CVB
ETC generation.
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Figure 2. Gamma probability density function for (a) a=2,=8, (b)a=8,p=8,(c)a=2,=16,and (d) a =2, f =32.

(1) Otask = 1 / Vtask2 s Omach = 1 / Vmach2 5
,Btask = ,utask / Qrask
(2) fori fromOto (t—1)
(3) ‘][1] = G( Otask 5ﬁtask)
/* q[i] will be used as mean
of i-th row of ETC matrix */
(4) ﬂmach [l] = (][l] / Qmach
/* scale parameter for i-th row */
(5) forjfrom O to (m—1)

(6) E[IJ] = G( Omachs ﬂmach[i])
(7)  endfor
(8) endfor

Figure 3. The general CVB method for generating
ETC matrices.

Given the three input parameters, Vi » Viachs
and pq, Line (1) of Figure 3 determines the shape
parameter o,y and scale parameter S, of the
gamma distribution that will be later sampled to
build the task vector ¢g. Line (1) also calculates the
shape parameter a,,,.; to use later in Line (6). In the
i-th iteration of the outer for loop (Line 2) in Figure
3, a gamma distribution with parameters o,y and
Lusr 18 sampled to obtain g[i]. Then ¢[i] is used to
determine the scale parameter f,..[i] (to be used
later in Line (6)). For the i-th iteration of the outer
for loop (Line 2), each iteration of the inner for loop
(Line 5) produces one element of the i-th row of the
ETC matrix by sampling a gamma distribution with
parameters tqcn and Bqen [[]. One complete row of
the ETC matrix is produced by m iterations of the
inner for loop (Line 5). Note that while each row in
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the ETC matrix has gamma distributed execution
times, the execution times in columns are not
gamma distributed.

The ETC generation method of Figure 3 can be
used to generate high task heterogeneity high
machine heterogeneity ETC matrices, high task
heterogeneity low machine heterogeneity ETC
matrices, and low task heterogeneity low machine
heterogeneity ETC matrices, but cannot generate
low task heterogeneity high machine heterogeneity
ETC matrices. To satisfy the heterogeneity
quadrants of Section 2, each column in the final low
task heterogeneity high machine heterogeneity ETC
matrix should reflect the low task heterogeneity of
the “parent” task vector ¢g. This condition would not
necessarily hold if rows of the ETC matrix were
produced with a high machine heterogeneity from a
task vector of low heterogeneity. This is because a
given column may be formed from widely different
execution time values from different rows because
of the high machine heterogeneity. That is, any two
entries in a given column are based on different
values of ¢[i] and @, and may therefore show
high task heterogeneity as opposed to the intended
low task heterogeneity. In contrast, in a high task
heterogeneity low machine heterogeneity ETC
matrix the low heterogeneity among the machines
for a given task (across a row) is based on the same
q[i] value.

One solution is to generate what is in effect a
transpose of a high task heterogeneity low machine
heterogeneity matrix to produce a low task
heterogeneity high machine heterogeneity one. The
transposition can be built into the procedure as
shown in Figure 4.

The procedure in Figure 4 is very similar to
the one in Figure 3. The input parameter g is
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replaced with u,..;,. Here, first a machine vector, p,
(with an average value of u,,..) is produced. Each
element of this “parent” machine vector is then used
to generate one low task heterogeneity column of
the ETC matrix, such that the high machine
heterogeneity present in p is reflected in all rows.
This approach for generating low task heterogeneity
high machine heterogeneity ETC matrices can also
be used with the range-based method.

(l) Otask = 1/ Vtask2 > Cmach = 1/ Vmach2 5

ﬁmach = Umach / Omach
(2) forj from O to (m — 1)

(3) p[]] = G( Qmach :ﬂmach )
/* p[j] will be used as mean
of j-th column of ETC matrix */
4 Puask U1= U1/ oasi
/* scale parameter for j-th column */
(5) forifromOto(r—1)
(6) e[la/] = G( Oasks ﬁtask[i])
(7)  endfor
(8) endfor

Figure 4. The CVB method for generating low task
heterogeneity high machine heterogeneity ETC
matrices.

Tables 5 through 10 show some sample ETC
matrices generated using the CVB ETC generation
method. Tables 5 and 6 both show high task
heterogeneity low machine heterogeneity ETC
matrices. In both tables, the spread of the execution
time values in columns is higher than that in rows.
The ETC matrix in Table 6 has a higher task
heterogeneity (higher V) than the ETC matrix in
Table 5. This can be seen in a higher spread in the
columns of matrix in Table 6 than that in Table 5.

Table 5. A high task heterogeneity low machine heterogeneity matrix generated by the CVB

method. V. = 0.3, Viypaen = 0.1.

m my m3 my ms mg m7 mg my | mig
H 628 633 748 558 743 684 740 692 593 554
153 688 712 874 743 854 851 701 701 811 864
[} 965 | 1,029 | 1,087 | 1,020 921 825 | 1,238 934 928 | 1,042
173 891 866 912 896 776 993 875 999 919 860
t5 | 1,844 | 1,507 | 1,353 | 1,436 | 1,677 | 1,691 | 1,508 | 1,646 | 1,789 | 1,251
e | 1,261 | 1,157 | 1,193 | 1,297 | 1,261 | 1,251 | 1,156 | 1,317 | 1,189 | 1,306
t7 850 928 780 | 1,017 761 900 998 838 797 824
rg | 1,042 | 1,291 | 1,169 | 1,562 | 1,277 | 1,431 | 1,236 | 1,092 | 1,274 | 1,305
to | 1,309 | 1,305 | 1,641 | 1,225 | 1,425 | 1,280 | 1,388 | 1,268 | 1,290 | 1,549
ho 881 865 752 893 883 813 892 805 873 915
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Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB
method. Vtask = 0.5, Vmach =0.1.

m mp m3 my ms me my msg Mg | mo
i 377 | 476 434 | 486 | 457 486 | 431 | 417 | 429 | 428
tp| 493 | 370 400 | 420 S02 | 472 475| 440 | 483 | 576
l3 745 | 646 922 | 650 | 791 878 | 853 | 791 756 | 788
f4 | 542 | 490 | 469 | 559 | 488 | 498 | 509 | 431 547 | 542
Is 625 | 666 | 618 710 | 624 | 615| 618 | 599 | 522 | 540
s | 921 785 | 159 | 979 865 | 843 | 853 | 870 | 939 | 801
t7 677 | 767 | 750 720 797 | 728 | 941 717 | 686 | 870
g | 428 | 418 | 394 | 460 | 434 | 427 | 378 | 427 | 447 | 466
lo 263 | 289 267 | 231 243 222 283 | 257 240 | 247

tio | 1,182 | 1,518 | 1,272 | 1,237 | 1,349 | 1,218 | 1,344 | 1,117 | 1,122 | 1,260

f | 1,455 | 1,384 | 1,694 | 1,644 | 1,562 | 1,639 | 1,776 | 1,813 | 1,488 | 1,709

tiz | 3,255 | 2,753 | 3,289 | 3,526 | 2,391 | 2,588 | 3,849 | 3,075 | 3,664 | 3,312

Table 7. A high task heterogeneity high machine heterogeneity matrix generated by the CVB
method. V= 0.6 , Voo = 0.6.

m my ms3 my ms mg mg mg my mio
| 1,446 | 1,110 | 666 883 | 1,663 | 1,458 653 | 1,886 458 | 1,265
| 1,010 [ 588 682 | 1,255 | 3,665 | 3,455 | 1,293 | 1,747 | 1,173 | 1,638
t3 | 1,893 | 2,798 | 1,097 465 | 2,413 | 1,184 | 2,119 | 1,955 | 1,316 | 2,686
f3 | 1,014 | 1,193 275 | 1,010 | 1,023 | 1,282 559 | 1,133 865 | 2,258
ts 170 | 444 | 500 | 408 790 | 528 232 303 301 480
ts | 1,454 | 1,106 | 901 793 | 1,346 | 703 | 1,215 490 537 | 1,592
] 579 | 1,041 852 | 1,560 | 1,983 | 1,648 859 683 945 | 1,713
tg | 2980 | 2,114 | 417 | 3,005 | 2900 | 3,216 | 421 | 2,854 | 1,425 | 1,631
ty 252 519 196 352 | 958 355 720 168 668 | 1,017

tio 173 235 273 176 110 127 93 276 390 103

th 115 74 251 71 107 | 479 153 138 274 189

t2 305 226 860 554 394 344 68 86 223 120

Table 8. A low task heterogeneity low machine heterogeneity matrix generated by the CVB
method. Vi, = 0.1, Vyaen = 0.1.

mp mp m3 ms ms me my mg me | Mo
h 085 | 1,043 945 835 830 | 1,087 | 1,009 891 | 1,066 | 1,075
fh 963 962 910 918 | 1,078 | 1,091 881 980 | 1,009 981
3 782 837 968 960 790 800 947 | 1,007 | 1,115 845
14 999 953 892 986 958 | 1,006 | 1,039 | 1,072 | 1,090 | 1,030
t5 971 972 913 | 1,030 891 873 898 994 | 1,086 | 1,122
ts | 1,155 | 1,065 800 | 1,247 980 | 1,103 | 1,228 | 1,062 | 1,011 | 1,005
t7 | 1,007 | 1,191 964 860 | 1,034 896 | 1,185 932 | 1,035 | 1,019
ts | 1,088 864 972 984 736 950 944 994 970 894
Iy 878 967 954 917 942 978 | 1,046 | 1,134 985 | 1,032
tio | 1,210 | 1,120 | 1,043 | 1,093 | 1,386 | 1,097 | 1,202 | 1,004 | 1,185 | 1,226
t1 910 958 | 1,046 | 1,062 952 | 1,054 | 1,020 | 1,175 850 | 1,060
ti2 930 935 908 | 1,155 991 997 828 | 1,062 886 831
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Table 9. A low task heterogeneity high machine heterogeneity matrix generated by
the CVB method. Vs = 0.1, Vyaer =

0.6.

my

mp

ms

ms

ms

Mme

ma

mg

mg

mio

h

1679

876

1,332

716

1,186

1,860

662

833

534

804

5

1,767

766

1,327

711

957

2,061

625

626

642

800

i3

1,870

861

1,411

932

1,065

1,562

625

976

556

842

171

1,861

817

1,218

865

1,096

1,660

587

767

736

822

I5

1,768

850

1,465

764

1,066

1,585

663

863

579

757

le

1,951

807

1,177

014

939

1,483

573

961

643

712

by

1,312

697

1,304

921

1,005

1,639

562

831

633

784

Ig

1,665

849

1,414

795

1,162

1,593

577

791

706

774

Iy

1,618

753

1,283

794

1,153

1,673

639

787

563

744

tio

19576

964

1,373

752

950

1,726

699

836

633

764

h

1,693

742

1,454

758

961

1,781

721

988

641

793

2

1 v863

823

1,317

890

1,137

1,812

704

800

479

848

Table 10. A low task heterogeneity high machine heterogeneity matrix generated by
the CVB method. Vs = 0.1, Voo = 2.0.

my | m m3 my ms | me | my mg | My | M

h | 4,784 | 326 | 1,620 | 1,307 | 3,301 | 10 | 103 | 4,449 | 228 | 40
t | 4315|276 | 1,291 | 1,863 | 3,712 | 11 | 91 | 5,255 | 200 | 47
13 1 6,278 | 269 | 1,493 | 1,181 [ 3,186 | 12 | 93 [ 4,604 | 235 | 46
12 | 4,945 | 294 | 1,629 | 1,429 | 2,894 | 14 | 87 | 4,724 | 231 45
t5 | 5,276 | 321 | 1,532 | 1,516 | 2,679 | 12 | 102 | 4,621 | 205 | 46
te | 4,946 | 293 | 1,467 | 1,609 | 2,661 | 10 | 96 | 3,991 | 255 39
17 | 4,802 | 327 | 1,317 | 1,668 | 2982 | 10| 90 | 5,090 | 252 | 42
tg | 5,381 | 365 | 1,698 | 1,384 | 3,668 | 12 | 99 | 5,133 | 242 38
to | 5,011 | 255 | 1,491 | 1,386 | 3,061 | 10| 94 | 3,739 | 216 | 42
ho | 5,228 | 296 | 1,489 | 1,515 | 3,632 | 12 | 107 | 4,682 | 203 | 38
tiy | 5367 | 319 | 1,332 | 1,363 [ 3,393 | 12| 72| 4,769 | 221 43
ti2 | 4,621 | 258 | 1,473 | 1,501 (3,124 | 12| 96 | 4,091 | 199 | 44

Tables 7 and 8 show high task heterogeneity
high machine heterogeneity and low task
heterogeneity low machine heterogeneity ETC
matrices, respectively. The execution times in Table
7 are widely spaced along both rows and columns.
The spread of execution times in Table 8 is smaller
along both columns and rows, because both V. and
V.nacn are smaller.

Tables 9 and 10 show low task heterogeneity
high machine heterogeneity ETC matrices. In both
tables, the spread of the execution time values in
rows is higher than that in columns. ETC matrix in
Table 10 has a higher machine heterogeneity (higher
Vinaer) than the ETC matrix in Table 9. This can be
seen in a higher spread in the rows of matrix in
Table 10 than that in Table 9.

3.3. Uniform Distribution in the CVB Method

The uniform distribution could also be used
for the CVB ETC generation method. The uniform
distribution’s characteristic parameters a (lower
bound for the range of values) and b (upper bound
for the range of values), can be easily interpreted in
terms of s, Viast, and Viaen. (Recall that Vi =
Orask/ Mrask AN Vipaen = Omaen | tmaen)- For a uniform

distribution, o = (b — a)/\/ﬁ and g =(b+a)/2
[17]. So that

a+b=2u

a—b:—ax/ﬁ

(1

2)
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Adding Equations (1) and (2),

a= ,u—ax/g 3)

a=u(l—(c/uW3) (4)

a=u(l-V+/3) (5)
Also,

b=2u—-a (6)

The Equations (5) and (6) can be used to generate
the task vector g from the uniform distribution with
the following parameters:

atask = /utask (1 - Vtask \/g) (7)

bmsk = 2ll'ltask - atask (8)

Once the task vector ¢ has been generated, the i-the
row of the ETC matrix can be generated by
sampling (m times) a uniform distribution with the
following parameters:

amach = q[l](l - Vmach \/g) (9)

bmach = 2q[l] - amach (10)

The CVB ETC generation using the uniform
distribution, however, places a restriction on the
values of V,, and V... Because both a,, and a,cn
have to be positive, it follows from Equations (7)
and (9) that the maximum value for V.., or Vi is

1/ \/g . Thus, for the CVB ETC generation, the
gamma distribution is better than the uniform
distribution because it does not restrict the values of
task or machine heterogeneities.

3.4. Producing Consistent ETC Matrices

The procedures given in Figures 1, 3, and 4
produce inconsistent ETC matrices. Consistent ETC
matrices can be obtained from the inconsistent ETC
matrices generated above by sorting the execution
times for each task on all machines (i.e., sorting the
values within each row and doing this for all rows
independently). From the inconsistent ETC matrices
generated above, partially-consistent matrices
consisting of an i x k sub-matrix could be generated
by sorting the execution times across a random

subset of & machines for each task in a random
subset of 7 tasks.

It should be noted from Tables 9 and 10 that
the greater the difference in machine and task
heterogeneities, the higher the degree of consistency
in the inconsistent low task heterogeneity high
machine heterogeneity ETC matrices. For example,
in Table 10 all tasks show consistent execution
times on all machines except on the machines that
correspond to columns 3 and 4. As mentioned in
Section 1, these degrees and classes of
mixed-machine heterogeneity can be wused to
characterize many different HC environments.

4. Analysis and Synthesis

Once the actual ETC matrices from a real life
scenario are obtained, they can be analyzed to
estimate the probability distribution of the execution
times, and the values of the model parameters (i.e.,
Viasks Viach, a0d thyasr (OF thpaen, if a low task
heterogeneity high machine heterogeneity ETC
matrix is desired)) appropriate for the given real life
scenario. The above analysis could be carried out
using common statistical procedures [11]. Once a
model of a particular HC system is available, the
effect of changes in the workload (i.e., the tasks
arriving for service in the system) and the system
(i.e., the machines present in the HC system) can be
studied in a controlled manner by simply changing
the parameters of the ETC model.

This experimental setup can then be used to
find out which mapping heuristics are best suited for
a given set of model parameters (i.€., Viusk> Vinacn, and
Huask (OT tacn)). This information can be stored in a
“look-up table,” so as to facilitate the choice of a
mapping heuristic given a set of model parameters.
The look-up table can be part of the toolbox in the
mapper.

The ETC model of Section 2 assumes that the
machine heterogeneity is the same for all tasks, i.e.,
different tasks show the same general variation in
their execution times over different machines. In
reality this may not be true; the variation in the
execution times of one task on all machines may be
very different from some other task. To model the
“variation in machine heterogeneity” along different
rows (i.e., for different tasks), another level of
heterogeneity could be introduced. For example, in
the CVB ETC generation, instead of having a fixed
value for V., for all the tasks, the value of V. for
a given task could be variable, e.g., it could be
sampled from a probability distribution. Once again,
the nature of the probability distribution and its
parameters will need to be decided empirically.
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5. Related Work

To the best of the authors’ knowledge, there is
currently no work presented in the open literature
that addresses the problem of modeling of execution
times of the tasks in an HC system (except the
already discussed work [15]). However, below are
presented two tangentially related works.

A detailed workload model for parallel
machines has been given in [5]. However the model
is not intended for HC systems in that the machine
heterogeneity is not modeled. Task execution times
are modeled but tasks are assumed to be running on
multiple processing nodes, unlike the HC
environment presented here where tasks run on
single machines only.

A method for generating random task graphs is
given in [21] as part of description of the simulation
environment for the HC systems. The method
proposed in [21] assumes that the computation cost
of a task #, averaged over all the machines in the

The method does

provide for characterizing the differences in the
execution times of a given task on different
processors in the HC system (i.e., machine
heterogeneity). The “range percentage” (8) of
computation costs on processors roughly
corresponds to the notion of machine heterogeneity
as presented here. The execution time, e;; , of task
on machine m; is randomly selected from the range,

;ix(l—ﬁ/Z)Seij Szx(l+ﬂ/2) . However,
the method in [21] does not provide for describing
the differences in the execution times of all the tasks

on an ‘“average” machine in the HC system. The
method in [21] does not tell how the differences in

system, is available as w, .

the values of ;l for different tasks will be modeled.

That is, the method is [21] does not consider task
heterogeneity. Further, the model in [21] does not
take into account the consistency of the task
execution times.

6. Conclusions

To describe different kinds of heterogeneous
environments, an existing model based on the
characteristics of the ETC matrix was presented.
The three parameters of this model (task
heterogeneity, = machine  heterogeneity, and
consistency) can be changed to investigate the
performance of mapping heuristics for different HC
systems and different sets of tasks. An existing
range-based method for quantifying heterogeneity
was described, and a new coefficient-of-variation-

based method was proposed. Corresponding
procedures for generating the ETC matrices
representing various heterogeneous environments
were presented. Sample ETC matrices were
provided for both ETC generation procedures. The
coefficient-of-variation-based ETC  generation
method provides a greater control over the spread of
values (i.e., heterogeneity) in any given row or
column of the ETC matrix than the range-based
method. This characterization of HC environments
will allow a researcher to simulate different HC
environments, and then evaluate the behavior of the
mapping heuristics under different conditions of
heterogeneity.
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