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Abstract 

 
A distributed heterogeneous computing (HC) system consists of 

diversely capable machines harnessed together to execute a set of 
tasks that vary in their computational requirements. Heuristics are 
needed to map (match and schedule) tasks onto machines in an HC 
system so as to optimize some figure of merit. An HC system model is 
needed to simulate different HC environments to allow the study of 
the relative performance of different mapping heuristics under 
different circumstances. This paper characterizes a simulated HC 
environment by using the expected execution times of the tasks that 
arrive in the system on the different machines present in the system. 
This information is arranged in an “expected time to compute” (ETC) 
matrix as a model of the given HC system, where the entry (i, j) is the 
expected execution time of task i on machine j. The ETC model is 
used to express the heterogeneity among the runtimes of the tasks to 
be executed, and among the machines in the HC system. An existing 
range-based technique to express heterogeneity in ETC matrices is 
described. A coefficient-of-variation based technique to express 
heterogeneity in ETC matrices is proposed, and compared with the 
range-based technique. The coefficient-of-variation-based ETC 
generation method provides a greater control over the spread of values 
(i.e., heterogeneity) in any given row or column of the ETC matrix 
than the range-based method. 
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1.  Introduction 

A distributed heterogeneous computing (HC) 
system consists of diversely capable machines 
harnessed together to execute a set of tasks that vary 
in their computational requirements. Heterogeneous 
computing systems range from diverse elements or 
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paradigms within a single computer (e.g., PASM 
[19]), to a cluster of different types of PCs, to 
coordinated, geographically distributed machines 
with different architectures (e.g., a grid [6]). An HC 
system provides a variety of capabilities that can be 
orchestrated to execute multiple tasks with varied 
computational requirements [4, 18]. HC systems are 
important for efficiently solving collections of 
computationally intensive problems. 

These environments achieve high performance 
by exploiting the affinity of different tasks to 
different computational platforms, while 
considering the overhead of inter-machine 
communication and the coordination of distinct data 
sources and administrative domains. In an HC 
system, tasks need to be matched to machines, and 
the execution of the tasks must be scheduled. The 
applicability and strength of HC systems are derived 
from their ability to match computing needs to 
appropriate resources. 

Heuristics are needed to map (match and 
schedule) tasks onto machines in an HC system so 
as to optimize some figure of merit. The heuristics 
that match a task to a machine can vary in the 
information they use. For example, the current 
candidate task can be assigned to the machine that 
becomes available soonest (even if the task may 
take a much longer time to execute on that machine 
than else-where). In another approach, the task may 
be assigned to the machine where it executes fastest 
(but ignores when that machine becomes available). 
Or the current candidate task may be assigned to the 
machine that completes the task soonest, i.e., the 
machine which minimizes the sum of task execution 
time and the machine ready time, where machine 
ready time for a particular machine is the time when 
that machine becomes available after having 
executed the tasks previously assigned to it (e.g., 
[15]). 

The more sophisticated (and possibly wiser) 
approaches to the mapping problem require 
estimates of the execution times of all tasks (that can 
be expected to arrive for service) on all the 
machines present in the HC suite to make better 
mapping decisions. One aspect of research on HC 
mapping heuristics explores the behavior of the 
heuristics in different HC environments. To use 
simulation to test the relative performance of 
different mapping heuristics under different 
circumstances necessitates that there be a 
framework for generating execution times of all the 
tasks in the HC system on all the machines in the 
HC system. Such a framework would, in turn, 
require a quantification of heterogeneity to express 
the variability among the runtimes of the tasks to be 

executed, and among the capabilities of the 
machines in the HC system. The goal of this invited 
paper is to present a methodology for synthesizing 
simulated HC environments with quantifiable levels 
of task and machine heterogeneity. This paper 
characterizes the HC environments so that it will be 
easier for researchers to describe the workload and 
the machines used in their simulations based on a 
common scale. 

Given a set of heuristics and a characterization 
of HC environments, one can determine the best 
heuristic to use in a given environment for 
optimizing a given objective function. In addition to 
increasing one’s understanding of the operation of 
different heuristics, this knowledge can help a 
working re-source management system select which 
mapper to use for a given real HC environment. 

This research is part of a DARPA/ITO 
Quorum Program project called MSHN 
(pronounced “mission”) (Management System for 
Heterogeneous Networks) [9]. MSHN is a 
collaborative research effort that includes the Naval 
Postgraduate School, NOEMIX, Purdue, and 
University of Southern California. It builds on 
SmartNet, an implemented scheduling framework 
and system for managing resources in an HC 
environment developed at NRaD [7]. The technical 
objective of the MSHN project is to design, 
prototype, and refine a distributed resource 
management system that leverages the 
heterogeneity of resources and tasks to deliver the 
re-quested qualities of service. 

A model for describing an HC system is 
presented in Section 2. Based on that model, two 
techniques for simulating an HC environment are 
described in Section 3. Section 4 briefly discusses 
analyzing the task execution time information from 
real life HC scenarios. Some related work is 
outlined in the Section 5. 

2.  Modeling Heterogeneity 

To better evaluate the behavior of mapping 
heuristics, a model of the execution times of the 
tasks on the machines is needed so that the 
parameters of this model can be changed to 
investigate the performance of the heuristics under 
different HC systems and under different types of 
tasks to be mapped. One such model consists of an 
expected time to compute (ETC) matrix, where the 
entry (i, j) is the expected execution time of task i on 
machine j. The ETC matrix can be stored on the 
same machine where the mapper is stored, and 
contains the estimates for the expected execution 
times of a task on all machines, for all the tasks that 
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are expected to arrive for service over a given 
interval of time. (Although stored with the mapper, 
the ETC information may be derived from other 
components of a resource management system (e.g., 
[9])). In an ETC matrix, the elements along a row 
indicate the estimates of the expected execution 
times of a given task on different machines, and 
those along a column give the estimates of the 
expected execution times of different tasks on a 
given machine. 

The exact actual task execution times on all 
machines may not be known for all tasks because, 
for example, they might be a function of input data. 
What is typically assumed in the HC literature is 
that estimates of the expected execution times of 
tasks on all machines are known (e.g., [8, 12, 14, 
20]). These estimates could be built from task 
profiling and machine benchmarking, could be 
derived from the previous executions of a task on a 
machine, or could be provided by the user (e.g., [3, 8, 
10, 16, 22]). 

The ETC model presented here can be 
characterized by three parameters: machine 
heterogeneity, task heterogeneity, and consistency. 
The variation along a row is referred to as the 
machine heterogeneity; this is the degree to which 
the machine _execution times vary for a given task 
[1]. A system’s machine heterogeneity is based on a 
combination of the machine heterogeneities for all 
tasks (rows). A system comprised mainly of 
workstations of similar capabilities can be said to 
have “low” machine heterogeneity. A system 
consisting of diversely capable machines, e.g., a 
collection of SMP’s, workstations, and 
supercomputers, may be said to have “high” 
machine heterogeneity. 

Similarly, the variation along a column of an 
ETC matrix is referred to as the task heterogeneity; 
this is the degree to which the task execution times 
vary for a given machine [1]. A system’s task 
heterogeneity is based on a combination of the task 
heterogeneities for all machines (columns). “High” 
task heterogeneity may occur when the 
computational needs of the tasks vary greatly, e.g., 
when both time-consuming simulations and fast 
compilations of small programs are performed. 
“Low” task heterogeneity may typically be seen in 
the jobs submitted by users solving problems of 
similar complexity (and hence have similar 
execution times on a given machine). 

Based on the above idea, four categories were 
proposed for the ETC matrix in [1]: (a) high task 
heterogeneity and high machine heterogeneity, (b) 
high task heterogeneity and low machine 
heterogeneity, (c) low task heterogeneity and high 

machine heterogeneity, and (d) low task 
heterogeneity and low machine heterogeneity. 

The ETC matrix can be further classified into 
two categories, consistent and inconsistent [1], 
which are orthogonal to the previous classifications. 
For a consistent ETC matrix, if a machine mx has a 
lower execution time than a machine my for a task tk, 
then the same is true for any task ti. A consistent 
ETC matrix can be considered to represent an 
extreme case of low task heterogeneity and high 
machine heterogeneity. If machine heterogeneity is 
high enough, then the machines may be so much 
different from each other in their compute power 
that the differences in the computational 
requirements of the tasks (if low enough) will not 
matter in determining the relative order of execution 
times for a given task on the different machines (i.e., 
along a row). As a trivially extreme example, 
consider a system consisting of Intel Pentium III and 
Intel 286. The Pentium III will almost always run 
any given task from a certain set of tasks faster than 
the 286 provided the computational requirements of 
all tasks in the set are similar (i.e., low task 
heterogeneity), thereby giving rise to a consistent 
ETC matrix. 

In inconsistent ETC matrices, the relationships 
among the task computational requirements and 
machine capabilities are such that no structure as 
that in the consistent case is enforced. Inconsistent 
ETC matrices occur in practice when: (1) there is a 
variety of different machine architectures in the HC 
suite (e.g., parallel machines, superscalars, 
workstations), and (2) there is a variety of different 
computational needs among the tasks (e.g., readily 
parallelizable tasks, difficult to parallelize tasks, 
tasks that are floating point intensive, simple text 
formatting tasks). Thus, the way in which a task’s 
needs correspond to a machine’s capabilities may 
differ for each possible pairing of tasks to machines. 

A combination of these two cases, which may 
be more realistic in many environments, is the 
partially-consistent ETC matrix, which is an 
inconsistent matrix with a consistent sub-matrix [2, 
15]. This sub-matrix can be composed of any subset 
of rows and any subset of columns. As an example, 
in a given partially-consistent ETC matrix, 50% of 
the tasks and 25% of the machines may define a 
consistent sub-matrix. 

Even though no structure is enforced on an 
inconsistent ETC matrix, a given ETC matrix 
generated to be inconsistent may have the structure 
of a partially consistent ETC matrix. In this sense, 
partially-consistent ETC matrices are a special case 
of inconsistent ETC matrices. Similarly, consistent 
ETC matrices are special cases of inconsistent and 
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partially-consistent ETC matrices. 
It should be noted that this classification 

scheme is used for generating ETC matrices. Later 
in this paper, it will be shown how these three cases 
differ in generation process. If one is given an ETC 
matrix, and is asked to classify it among these three 
classes, it will be called a consistent ETC matrix 
only if it is fully consistent. It will be called 
inconsistent if it is not consistent. 

Often an inconsistent ETC matrix will have 
some partial consistency in it. For example, a trivial 
case of partial-consistency always exists; for any 
two machines in the HC suite, at least 50% of the 
tasks will show consistent execution times. 

3.  Generating the ETC Matrices 

3.1.  Range Based ETC Matrix Generation 

Any method for generating the ETC matrices 
will require that heterogeneity be defined 
mathematically. In the range-based ETC generation 
technique, the heterogeneity of a set of execution 
time values is quantified by the range of the 
execution times [2, 15]. The procedures given in this 
section for generating the ETC matrices produce 
inconsistent ETC matrices. It is shown later in this 
section how consistent and partially-consistent ETC 
matrices could be obtained from the inconsistent 
ETC matrices. 

Assume m is the total number of machines in 
the HC suite, and t is the total number of tasks 
expected to be serviced by the HC system over a 
given interval of time. Let U(a, b) be a number 
sampled from a uniform distribution with a range 
from a to b. (Each invocation of U(a, b) returns a 
new sample.) Let Rtask and Rmach be numbers 
representing task heterogeneity and machine 
heterogeneity, respectively, such that higher values 
for Rtask and Rmach represent higher heterogeneities. 
Then an ETC matrix e [0..(t-1), 0..(m-1)], for a 
given task heterogeneity and a given machine 
heterogeneity, can be generated by the range-based 
method given in Figure 1, where e [i, j] is the 
estimated expected execution time for the task i on 
the machine j. 

As shown in Figure 1, each iteration of the 
outer for loop samples a uniform distribution with a 
range from 1 to Rtask to generate one value for a 
vector τ . For each element of τ thus generated, the 
m iterations of the inner for loop (Line 3) generate 
one row of the ETC matrix. For the i-th iteration of 
the outer for loop, each iteration of the inner for 
loop produces one element of the ETC matrix by 
multiplying τ[i] with a random number sampled 

from a uniform distribution ranging from 1 to Rmach. 
In the range-based ETC generation, it is 

possible to obtain high task heterogeneity low 
machine heterogeneity ETC matrices with 
characteristics similar to that of low task 
heterogeneity high machine heterogeneity ETC 
matrices if Rtask = Rmach. In realistic HC systems, the 
variation that tasks show in their computational 
needs is generally larger than the variation that 
machines show in their capabilities. Therefore it is 
assumed here that requirements of high 
heterogeneity tasks are likely to be more 
“heterogeneous” than the capabilities of high 
heterogeneity machines (i.e., Rtask » Rmach). However, 
for the ETC matrices generated here, low 
heterogeneity in both machines and tasks is 
assumed to be same. Typical values for Rtask for for 
high and low heterogeneities are 105 and 10, 
respectively. And similarly for Rmach, these values 
are 102 and 10, respectively. Tables 1 through 4 
show four ETC matrices generated by the 
range-based method using the above-mentioned 
typical values for Rtask and Rmach. The execution time 
values in Table 3 are much higher than the execution 
time values in Table 2. The difference in the values 
between these two tables would be reduced if the 
range for the low task heterogeneity was changed to 
103 to 104 instead of 1 to 10. 

 
Table 1. A low task heterogeneity low machine 

heterogeneity matrix generated by the 
range-based method. 

 
 

With the range-based method, low task 
heterogeneity high machine heterogeneity ETC 
matrices tend to have high heterogeneity for both 
tasks and machines, due to method used for 
generation. For example, in Table 2, original 
τ vector values were selected from 1 to 10. When 
each entry is multiplied by a number from 1 to 100 
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(1) for i from 0 to (t-1) 
(2)   τ[i] = U ( 1, Rtask) 
(3)   for j from 0 to (m-1) 
(4)      e[i,j] = τ[i]× U ( 1, Rmach) 
(5)   endfor 
(6) endfor 

for high machine heterogeneity this generates a task 
heterogeneity comparable to machine heterogeneity. 
It is shown in Section 3.2 how to produce low task 
heterogeneity high machine heterogeneity ETC 
matrices which do show low task heterogeneity. 
 

Figure 1. The range-based method for generating ETC 
matrices. 

 
 
 
 

 
Table 2. A low task heterogeneity high machine 

heterogeneity matrix generated by the 
range-based method. 

 

Table 3. A high task heterogeneity low machine heterogeneity matrix generated by the 
range-based method. 

 
 

Table 4. A high task heterogeneity high machine heterogeneity matrix generated by the 
range-based method. 
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3.2. Coefficient-of-Variation Based ETC Matrix 
Generation 

A modification of the procedure in Figure 1 
defines the coefficient of variation, V, of execution 
time values as a measure of heterogeneity (instead 
of the range of execution time values). The 
coefficient of variation of a set of values is a better 
measure of the dispersion in the values than the 
standard deviation because it expresses the standard 
deviation as a percentage of the mean of the values 
[13]. Let σ and µ be the standard deviation and 
mean, respectively, of a set of execution time values. 
Then V = σ / µ. The coefficient-of-variation-based 
ETC generation method provides a greater control 
over spread of the execution time values (i.e., 
heterogeneity) in any given row or column of the 
ETC matrix than the range-based method. 

The coefficient-of-variation-based (CVB) 
ETC generation method works as follows. A task 
vector, q, of expected execution times with the 
desired task heterogeneity must be generated. 
Essentially, q[i] is the execution time of task i on an 
“average” machine in the HC suite. For example, if 
the HC suite consists of an IBM SP/2, an Alpha 
server, and a Sun SPARC 5 workstation, then q 
would represent estimated execution times of the 
tasks on the Alpha server. 

To generate q, two input parameters are 
needed: µtask and Vtask. The input parameter, µtask is 
used to set the average of the values in q. The input 
parameter Vtask is the desired coefficient of variation 
of the values in q. The value of Vtask quantifies task 
heterogeneity, and is larger for higher task 
heterogeneity. Each element of the task vector q is 
then used to produce one row of the ETC matrix 
such that the desired coefficient of variation of 
values in each row is Vmach, another input parameter. 
The value of Vmach quantifies machine heterogeneity, 
and is larger for higher machine heterogeneity. Thus 
µtask, Vtask, and Vmach are the three input parameters 
for the CVB ETC generation method. 

A direct approach to simulating HC 
environments should use the probability distribution 
that is empirically found to represent closely the 
distribution of task execution times. However, no 
standard benchmarks for HC systems are currently 
available. Therefore, this research uses a 
distribution which, though not necessarily reflective 
of an actual HC scenario, is flexible enough to be 
adapted to one. Such a distribution should not 
produce negative values of task execution times 
(e.g., ruling out Gaussian distribution), and should 
have a variable coefficient of variation (e.g., ruling 
out exponential distribution). 

The gamma distribution is a good choice for 
the CVB ETC generation method because, with 
proper constraints on its characteristic parameters, it 
can approximate two other probability distributions, 
namely the Erlang-k and Gaussian (without the 
negative values) [13, 17]. The fact that it can 
approximate these two other distributions is helpful 
because this increases the chances that the simulated 
ETC matrices could be synthesized closer to some 
real life HC environment. 

The uniform distribution can also be used but 
is not as flexible as the gamma distribution for two 
reasons: (1) it does not approximate any other 
distribution, and (2) the characteristic parameters of 
a uniform distribution cannot take all real values 
(explained later in the Section 3.3). 

The gamma distribution [13, 17] is defined in 
terms of characteristic shape parameter, α, and scale 
parameter, β. The characteristic parameters of the 
gamma distribution can be fixed to generate 
different distributions. For example, if α is fixed to 
be an integer, then the gamma distribution becomes 
an Erlang-k distribution. If α is large enough, then 
the gamma distribution approaches a Gaussian 
distribution (but still does not return negative values 
for task execution times). 

Figures 2(a) and 2(b) show how a gamma 
density function changes with the shape parameter α. 
When the shape parameter increases from two to 
eight, the shape of the distribution changes from a 
curve biased to the left to a more balanced bell-like 
curve. Figures 2(a), 2(c) and 2(d) show the effect on 
the distribution caused by an increase in the scale 
parameter from 8 to 16 to 32. The two-fold increase 
in the scale parameter does not change the shape of 
the graph (the curve is still biased to the left); 
however the curve now has twice as large a domain 
(i.e., range on x-axis). 

The gamma distribution’s characteristic 
parameters, α and β, can be easily interpreted in 
terms of µtask, Vtask, and Vmach. For a gamma 
distribution, αβσ = , and βαµ = , so that 

αµσ /1/ ==V  (and 2/1 V=α ). Then αtask = 

1 / Vtask
2  and αmach =  1 / Vmach

2 . Further, because 
βαµ = , αµβ /= , and βtask = µtask / αtask. Also, 

for task i, βmach [£i] =  q[i] / αmach. 
Let G(α, β) be a number sampled from a 

gamma distribution with the given parameters. 
(Each invocation of G(α, β) returns a new sample.) 
Figure 3 shows the general procedure for the CVB 
ETC generation. 
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Figure 2. Gamma probability density function for (a) α = 2, β = 8, (b) α = 8, β = 8, (c) α = 2, β = 16, and (d) α = 2, β = 32. 
 

 
 

(1) αtask = 1 / Vtask
2 ; αmach = 1 / Vmach

2 ; 
βtask = µtask / αtask  

(2) for i from 0 to (t – 1) 
(3)       q[i] = G( αtask ,βtask ) 
            /* q[i] will be used as mean 
             of i-th row of ETC matrix */ 
(4)       βmach [i] = q[i] / αmach 
            /* scale parameter for i-th row */ 
(5)      for j from 0 to (m – 1) 
(6)            e[i,j] = G( αmach, βmach[i]) 
(7)      endfor 
(8) endfor 

 
Figure 3. The general CVB method for generating 
                ETC matrices. 

 

 
Given the three input parameters, Vtask , Vmach, 

and µtask, Line (1) of Figure 3 determines the shape 
parameter αtask and scale parameter βtask of the 
gamma distribution that will be later sampled to 
build the task vector q. Line (1) also calculates the 
shape parameter αmach to use later in Line (6). In the 
i-th iteration of the outer for loop (Line 2) in Figure 
3, a gamma distribution with parameters αtask and 
βtask is sampled to obtain q[i]. Then q[i] is used to 
determine the scale parameter βmach[i] (to be used 
later in Line (6)). For the i-th iteration of the outer 
for loop (Line 2), each iteration of the inner for loop 
(Line 5) produces one element of the i-th row of the 
ETC matrix by sampling a gamma distribution with 
parameters αmach and βmach [i]. One complete row of 
the ETC matrix is produced by m iterations of the 
inner for loop (Line 5). Note that while each row in 
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the ETC matrix has gamma distributed execution 
times, the execution times in columns are not 
gamma distributed. 

The ETC generation method of Figure 3 can be 
used to generate high task heterogeneity high 
machine heterogeneity ETC matrices, high task 
heterogeneity low machine heterogeneity ETC 
matrices, and low task heterogeneity low machine 
heterogeneity ETC matrices, but cannot generate 
low task heterogeneity high machine heterogeneity 
ETC matrices. To satisfy the heterogeneity 
quadrants of Section 2, each column in the final low 
task heterogeneity high machine heterogeneity ETC 
matrix should reflect the low task heterogeneity of 
the “parent” task vector q. This condition would not 
necessarily hold if rows of the ETC matrix were 
produced with a high machine heterogeneity from a 
task vector of low heterogeneity. This is because a 
given column may be formed from widely different 
execution time values from different rows because 
of the high machine heterogeneity. That is, any two 
entries in a given column are based on different 
values of q[i] and αmach, and may therefore show 
high task heterogeneity as opposed to the intended 
low task heterogeneity. In contrast, in a high task 
heterogeneity low machine heterogeneity ETC 
matrix the low heterogeneity among the machines 
for a given task (across a row) is based on the same 
q[i] value. 

One solution is to generate what is in effect a 
transpose of a high task heterogeneity low machine 
heterogeneity matrix to produce a low task 
heterogeneity high machine heterogeneity one. The 
transposition can be built into the procedure as 
shown in Figure 4. 

The procedure in Figure 4 is very similar to 
the one in Figure 3. The input parameter µtask is 

replaced with µmach. Here, first a machine vector, p, 
(with an average value of µmach) is produced. Each 
element of this “parent” machine vector is then used 
to generate one low task heterogeneity column of 
the ETC matrix, such that the high machine 
heterogeneity present in p is reflected in all rows. 
This approach for generating low task heterogeneity 
high machine heterogeneity ETC matrices can also 
be used with the range-based method. 

 
(1) αtask = 1 / Vtask

2 ; αmach = 1 / Vmach
2 ; 

βmach = µmach / αmach  
(2) for j from 0 to (m – 1) 
(3)       p[j] = G( αmach ,βmach ) 
            /* p[j] will be used as mean 
             of j-th column of ETC matrix */ 
(4)       βtask [j] = p[j] / αtask 
            /* scale parameter for j-th column */ 
(5)      for i from 0 to (t – 1) 
(6)            e[i,j] = G( αtask, βtask[j]) 
(7)      endfor 
(8) endfor 

 
Figure 4. The CVB method for generating low task 

heterogeneity high machine heterogeneity ETC 
matrices.  

 
Tables 5 through 10 show some sample ETC 

matrices generated using the CVB ETC generation 
method. Tables 5 and 6 both show high task 
heterogeneity low machine heterogeneity ETC 
matrices. In both tables, the spread of the execution 
time values in columns is higher than that in rows. 
The ETC matrix in Table 6 has a higher task 
heterogeneity (higher Vtask) than the ETC matrix in 
Table 5. This can be seen in a higher spread in the 
columns of matrix in Table 6 than that in Table 5. 

 
Table 5. A high task heterogeneity low machine heterogeneity matrix generated by the CVB 

method. Vtask = 0.3 , Vmach = 0.1. 
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Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB 
method. Vtask = 0.5 , Vmach = 0.1. 

 
Table 7. A high task heterogeneity high machine heterogeneity matrix generated by the CVB 

method. Vtask = 0.6 , Vmach = 0.6. 

 
Table 8. A low task heterogeneity low machine heterogeneity matrix generated by the CVB 

method. Vtask = 0.1 , Vmach = 0.1. 
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Table 9. A low task heterogeneity high machine heterogeneity matrix generated by 
the CVB method. Vtask = 0.1 , Vmach = 0.6. 

 
 

 
Table 10. A low task heterogeneity high machine heterogeneity matrix generated by 

the CVB method. Vtask = 0.1 , Vmach = 2.0. 

 
 

Tables 7 and 8 show high task heterogeneity 
high machine heterogeneity and low task 
heterogeneity low machine heterogeneity ETC 
matrices, respectively. The execution times in Table 
7 are widely spaced along both rows and columns. 
The spread of execution times in Table 8 is smaller 
along both columns and rows, because both Vtask and 
Vmach are smaller. 

 
Tables 9 and 10 show low task heterogeneity 

high machine heterogeneity ETC matrices. In both 
tables, the spread of the execution time values in 
rows is higher than that in columns. ETC matrix in 
Table 10 has a higher machine heterogeneity (higher 
Vmach) than the ETC matrix in Table 9. This can be 
seen in a higher spread in the rows of matrix in 
Table 10 than that in Table 9. 

3.3.  Uniform Distribution in the CVB Method 

The uniform distribution could also be used 
for the CVB ETC generation method. The uniform 
distribution’s characteristic parameters a (lower 
bound for the range of values) and b (upper bound 
for the range of values), can be easily interpreted in 
terms of µtask, Vtask, and Vmach. (Recall that Vtask = 
σtask/µtask and Vmach = σmach / µmach). For a uniform 
distribution, 12/)( ab −=σ  and 2/)( ab +=µ  
[17]. So that 
 

µ2=+ ba        (1) 
 

12σ−=− ba      (2) 
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Adding Equations (1) and (2), 
 

3σµ −=a       (3) 
 

)3)/(1( µσµ −=a     (4) 
 

)31( Va −= µ      (5) 
 
Also, 
 

ab −= µ2       (6) 
 
The Equations (5) and (6) can be used to generate 
the task vector q from the uniform distribution with 
the following parameters: 
 

)31( tasktasktask Va −= µ        (7) 
 

tasktasktask ab −= µ2         (8) 
 
Once the task vector q has been generated, the i-the 
row of the ETC matrix can be generated by 
sampling (m times) a uniform distribution with the 
following parameters: 
 

)31]([ machmach Viqa −=        (9) 
 

machmach aiqb −= ][2       (10) 
 

The CVB ETC generation using the uniform 
distribution, however, places a restriction on the 
values of Vtask and Vmach. Because both atask and amach 
have to be positive, it follows from Equations (7) 
and (9) that the maximum value for Vmach or Vtask is 

3/1 . Thus, for the CVB ETC generation, the 
gamma distribution is better than the uniform 
distribution because it does not restrict the values of 
task or machine heterogeneities. 

3.4.  Producing Consistent ETC Matrices 

The procedures given in Figures 1, 3, and 4 
produce inconsistent ETC matrices. Consistent ETC 
matrices can be obtained from the inconsistent ETC 
matrices generated above by sorting the execution 
times for each task on all machines (i.e., sorting the 
values within each row and doing this for all rows 
independently). From the inconsistent ETC matrices 
generated above, partially-consistent matrices 
consisting of an i × k sub-matrix could be generated 
by sorting the execution times across a random 

subset of k machines for each task in a random 
subset of i tasks. 

It should be noted from Tables 9 and 10 that 
the greater the difference in machine and task 
heterogeneities, the higher the degree of consistency 
in the inconsistent low task heterogeneity high 
machine heterogeneity ETC matrices. For example, 
in Table 10 all tasks show consistent execution 
times on all machines except on the machines that 
correspond to columns 3 and 4. As mentioned in 
Section 1, these degrees and classes of 
mixed-machine heterogeneity can be used to 
characterize many different HC environments. 

4.  Analysis and Synthesis 

Once the actual ETC matrices from a real life 
scenario are obtained, they can be analyzed to 
estimate the probability distribution of the execution 
times, and the values of the model parameters (i.e., 
Vtask, Vmach, and µtask (or µmach, if a low task 
heterogeneity high machine heterogeneity ETC 
matrix is desired)) appropriate for the given real life 
scenario. The above analysis could be carried out 
using common statistical procedures [11]. Once a 
model of a particular HC system is available, the 
effect of changes in the workload (i.e., the tasks 
arriving for service in the system) and the system 
(i.e., the machines present in the HC system) can be 
studied in a controlled manner by simply changing 
the parameters of the ETC model.  

This experimental setup can then be used to 
find out which mapping heuristics are best suited for 
a given set of model parameters (i.e., Vtask, Vmach, and 
µtask (or µmach)). This information can be stored in a 
“look-up table,” so as to facilitate the choice of a 
mapping heuristic given a set of model parameters. 
The look-up table can be part of the toolbox in the 
mapper. 

The ETC model of Section 2 assumes that the 
machine heterogeneity is the same for all tasks, i.e., 
different tasks show the same general variation in 
their execution times over different machines. In 
reality this may not be true; the variation in the 
execution times of one task on all machines may be 
very different from some other task. To model the 
“variation in machine heterogeneity” along different 
rows (i.e., for different tasks), another level of 
heterogeneity could be introduced. For example, in 
the CVB ETC generation, instead of having a fixed 
value for Vmach for all the tasks, the value of Vmach for 
a given task could be variable, e.g., it could be 
sampled from a probability distribution. Once again, 
the nature of the probability distribution and its 
parameters will need to be decided empirically. 
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5.  Related Work 

To the best of the authors’ knowledge, there is 
currently no work presented in the open literature 
that addresses the problem of modeling of execution 
times of the tasks in an HC system (except the 
already discussed work [15]). However, below are 
presented two tangentially related works. 

A detailed workload model for parallel 
machines has been given in [5]. However the model 
is not intended for HC systems in that the machine 
heterogeneity is not modeled. Task execution times 
are modeled but tasks are assumed to be running on 
multiple processing nodes, unlike the HC 
environment presented here where tasks run on 
single machines only. 

A method for generating random task graphs is 
given in [21] as part of description of the simulation 
environment for the HC systems. The method 
proposed in [21] assumes that the computation cost 
of a task ti, averaged over all the machines in the 
system, is available as iw . The method does 
provide for characterizing the differences in the 
execution times of a given task on different 
processors in the HC system (i.e., machine 
heterogeneity). The “range percentage” (ß) of 
computation costs on processors roughly 
corresponds to the notion of machine heterogeneity 
as presented here. The execution time, ei j , of task ti 
on machine mj is randomly selected from the range, 

)2/1()2/1( ββ +×≤≤−× iiji wew . However, 
the method in [21] does not provide for describing 
the differences in the execution times of all the tasks 
on an “average” machine in the HC system. The 
method in [21] does not tell how the differences in 
the values of iw  for different tasks will be modeled. 
That is, the method is [21] does not consider task 
heterogeneity. Further, the model in [21] does not 
take into account the consistency of the task 
execution times. 

6.  Conclusions 

To describe different kinds of heterogeneous 
environments, an existing model based on the 
characteristics of the ETC matrix was presented. 
The three parameters of this model (task 
heterogeneity, machine heterogeneity, and 
consistency) can be changed to investigate the 
performance of mapping heuristics for different HC 
systems and different sets of tasks. An existing 
range-based method for quantifying heterogeneity 
was described, and a new coefficient-of-variation- 

based method was proposed. Corresponding 
procedures for generating the ETC matrices 
representing various heterogeneous environments 
were presented. Sample ETC matrices were 
provided for both ETC generation procedures. The 
coefficient-of-variation-based ETC generation 
method provides a greater control over the spread of 
values (i.e., heterogeneity) in any given row or 
column of the ETC matrix than the range-based 
method. This characterization of HC environments 
will allow a researcher to simulate different HC 
environments, and then evaluate the behavior of the 
mapping heuristics under different conditions of 
heterogeneity. 
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